帳號:guest(3.145.84.135)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李宗翰
作者(外文):Li, TsungHan
論文名稱(中文):被覆二氧化鈦之304不鏽鋼於含過氧化氫與溶氫之高溫純水環境的腐蝕行為研究
論文名稱(外文):Corrosion Behavior of TiO2 Treated Type 304 Stainless Steels in High Temperature Pure Water Environments with Dissolved Hydrogen Peroxide and Hydrogen
指導教授(中文):葉宗洸
王美雅
指導教授(外文):Yeh, Tsung-Kuang
Wang, Mei-Ya
口試委員(中文):黃俊源
歐陽汎怡
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011517
出版年(民國):103
畢業學年度:103
語文別:中文
論文頁數:102
中文關鍵詞:應力腐蝕龜裂二氧化鈦電化學腐蝕電位動態電位極化掃描
外文關鍵詞:Stress corrosion crackingTitanium dioxideElectrochemical corrosion potentialElectrochemical potentiodynamic polarization.
相關次數:
  • 推薦推薦:0
  • 點閱點閱:634
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
二氧化鈦具n型半導體特性,照光下會產生自由電子,促使金屬基材表面帶有負電位,適合應用於具Cherenkov radiation的電廠爐心附近組件防蝕應用上。本研究主要探討在高溫高壓純水環境下,經二氧化鈦抑制性被覆處理的304不鏽鋼試片之電化學特性研究。304不鏽鋼試片首先在288°C及溶氧量300 ppb的水環境下進行為期14天的預長氧化膜處理,或於288°C且溶氧量300 ppb及溶氫量50 ppb之水環境下各浸放7天;接著再分別於150°C及280°C,含濃度10 ppm或100 ppm的二氧化鈦奈米粉末之純水環境下,以動態循環熱水沉積法進行為期4天的被覆處理;最後以電化學極化掃描(Electrochemical Potentiodynamic Polarization)分析經二氧化鈦處理及未處理的試片在288°C及過氧化氫濃度300 ppb或溶氫量50 ppb的水環境下之腐蝕行為;除此之外,同時亦會觀察在照射紫外光源後經二氧化鈦被覆的試片之光電效應。實驗結果顯示,在280°C進行被覆處理之試片的被覆量高於在150°C進行被覆處理之試片;此外,於過氧化氫濃度300 ppb或溶氫量50 ppb的水環境中,不論照光與否,經二氧化鈦被覆處理的試片之電化學腐蝕電位(Electrochemical Corrosion Cotential, ECP)都小於未處理的試片。
Titanium dioxide (TiO2) coupled with ultraviolet irradiation was selected as a coating material for corrosion mitigation of Type 304 stainless steel (SS) in high temperature water with different water chemistry conditions. Type 304 SS specimens were pre-oxidized in oxygenated pure water at 288°C for 14 days, or they were pre-oxidized in oxygenated pure water at 288°C for 7 days and then further exposed to hydrogenated pure water also at 288°C for another 7 days. The pre-oxidized specimens were deposited with TiO2 nanoparticles by hydrothermal deposition at 150°C or 280°C for 4 days in pure water with a TiO2 concentration of 10 ppm or 100 ppm. Electrochemical potentiodynamic polarization analyses were conducted to investigate the corrosion behavior of both TiO2-treated and pre-oxidized specimens in 288°C pure water with H2O2 concentration of 300 ppb or H2 concentration of 50 ppb. Ultraviolet (UV) irradiation was then imposed upon the TiO2-treated specimens to examine if there was any photoelectric effect on the corrosion behavior of the treated samples. The TiO2 loading on the specimen treated at 280°C was significantly greater than that treated at 150°C, as verified by the ICP-MS loading measurements. The results showed that UV irradiation on the TiO2 treated samples led to decreases in corrosion rate of the samples in high temperature water with the presence of hydrogen peroxide. Further examinations on the impact of UV irradiation on the corrosion behavior of TiO2 treated Type 304 SS samples in H2O2-rich or hydrogenated pure water are being conducted.
目錄
摘要 i
Abstract ii
致謝 iv
目錄 vi
表目錄 x
圖目錄 xii
第一章 前言 1
1.1. 研究背景 1
1.2. 研究目的 2
1.3. 論文結構 4
第二章 基礎理論 6
2.1. 混合電位理論 6
2.1.1. 混合電位模式(Mixed Potential Model, MPM) 6
2.1.2. 影響ECP大小的重要參數 9
2.2. 伊凡斯圖(Evan’s Diagram) 10
2.2.1. 伊凡斯圖 10
2.2.2. 塔弗外插法(Tafel Extrapolation) 12
第三章 文獻回顧 14
3.1. 不鏽鋼於高溫水環境下的氧化膜型態 14
3.1.1. 不鏽鋼於高溫水環境下的表面氧化膜結構 14
3.1.2. 雷射拉曼散射光譜分析 21
3.1.3. 氧化膜結構對電化學腐蝕電位的影響 22
3.2. 電化學腐蝕電位與應力腐蝕龜裂關係 23
3.3. 加氫水化學 26
3.4. 貴重金屬化學添加 28
3.5. 二氧化鈦防蝕技術 29
第四章 研究方法 35
4.1. 實驗方法與流程 35
4.2. 試片準備 36
4.3. 敏化程度測試 37
4.4. 預長氧化膜 38
4.5. 光觸媒二氧化鈦被覆 39
4.6. 實驗設備 40
4.6.1. 模擬BWR水循環系統 40
4.6.2. 二氧化鈦被覆系統 41
4.6.3. 模擬Cherenkov Radiation之紫外光源與高壓釜透光視窗裝置 43
4.6.4. 參考電極製作 45
4.7. 試片分析 46
4.7.1. 輝光放電分析儀 46
4.7.2. 場發射掃描式電子顯微鏡及能量散布分析儀 46
4.7.3. 雷射拉曼散射光譜儀 47
4.7.4. 感應式耦合電漿質譜分析 47
4.8. 高溫電化學分析 48
4.8.1. 預長氧化膜過程之電化學腐蝕電位監測 49
4.8.2. 被覆二氧化鈦試片照射紫外光源之電化學腐蝕電位觀測 49
4.8.3. 動態電位極化掃描分析 49
第五章 實驗結果 51
5.1. 敏化測試 51
5.2. 預長氧化膜結果分析 52
5.2.1. 掃描式電子顯微鏡(SEM&EDX) 52
5.2.2. 雷射拉曼散射光譜(LRS) 54
5.3. IPC試片結果分析 57
5.3.1. 掃描式電子顯微鏡(SEM&EDX) 57
5.3.2. 雷射拉曼散射光譜(LRS) 61
5.3.3. 感應耦合電漿質譜分析(ICP-MS) 62
5.4. 常溫電化學分析 64
5.5. 高溫電化學分析 65
5.5.1. 含過氧化氫環境之電化學腐蝕電位量測 66
5.5.2. 含過氧化氫環境之動態電位極化掃描曲線 69
5.5.3. 低溶氫環境之電化學腐蝕電位量測 80
5.5.4. 低溶氫環境之動態電位極化掃描曲線 82
第六章 結論 92
第七章 未來工作 94
參考文獻 95
[1] IPCC, "Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change," ed. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 2007.
[2] U.N., "Kyoto Protocol to the United Nations Framwork Convention on Climate Change: The Ultimate Objective of Convention," ed, 2008.
[3] S. Uchida, Y. Morishima, T. Hirose, T. Miyazawa, T. Satoh, Y. Satoh, et al., "Effects of Hydrogen Peroxide on Corrosion of Stainless Steel (VI) —Effects of Hydrogen Peroxide and Oxygen on Anodic Polarization Properties of Stainless Steel in High Temperature Pure Water—," Journal of Nuclear Science and Technology, vol. 44, pp. 758-766, 2007.
[4] D. D. Macdonald, Corrosion, vol. 48, p. 194, 1992.
[5] Y. Tan, Heterogeneous Electrode Processes and Localized Corrosion. John Wiley & Sons, Inc., Hoboken, New Jersey.
[6] Y.-J. Kim, "Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288 C Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide," Corrosion, vol. 55, pp. 81-88, 1999.
[7] Y. J. Kim, "Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288oC Water," presented at the The International Conference on Water Chemistry of Nuclear Reactor Systems, San Francisco, 2004.
[8] S. Uchida, N. Shigenaka, M. Tachibana, Y. Wada, M. Sakai, K. Akamine, et al., "Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water,(I) Effects of Hydrogen Peroxide on Electrochemical Corrosion Potential of Stainless Steel," Journal of Nuclear Science and Technology, vol. 35, pp. 301-308, 1998.
[9] Y. Wada, A. Watanabe, M. Tachibana, N. Uetake, S. Uchida, and K. Ishigure, "Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water,(III) Crack Growth Rates in Corrosive Environment Determined by Hydrogen Peroxide," Journal of Nuclear Science and Technology, vol. 37, pp. 901-912, 2000.
[10] S. Uchida, M. Tachibana, A. Watanabe, Y. Wada, N. Shigenaka, and K. Ishigure, "Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water,(II) Optimization of Crack Propagation Rate Measurement System," Journal of nuclear science and technology, vol. 37, pp. 257-266, 2000.
[11] Y. Wada, A. Watanabe, M. Tachibana, K. ISHIDA, N. UETAKE, S. UCHIDA, et al., "Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water,(IV) Effects of Oxide Film on Electrochemical Corrosion Potential," Journal of Nuclear Science and Technology, vol. 38, pp. 183-192, 2001.
[12] Y. Murayama, T. Satoh, S. Uchida, Y. Satoh, S. Nagata, T. Satoh, et al., "Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water,(V) Characterization of Oxide Film on Stainless Steel by Multilateral Surface Analyses," Journal of Nuclear Science and Technology, vol. 39, pp. 1199-1206, 2002.
[13] T. Satoh, S. Uchida, J.-i. Sugama, N. Yamashiro, T. Hirose, Y. Morishima, et al., "Effects of Hydrogen Peroxide on Corrosion of Stainless Steel,(I) Improved Control of Hydrogen Peroxide Remaining in a High Temperature High Pressure Hydrogen Peroxide Loop," Journal of Nuclear Science and Technology, vol. 41, pp. 610-618, 2004.
[14] J. Sugama, S. Uchida, N. Yamashiro, Y. Morishima, T. Hirose, T. Miyazawa, et al., "Effects of Hydrogen Peroxide on Corrosion of Stainless Steel,(II) Evaluation of Oxide Film Properties by Complex Impedance Measurement," Journal of Nuclear Science and Technology, vol. 41, pp. 880-889, 2004.
[15] T. Miyazawa, S. Uchida, T. Satoh, Y. MORISHIMA, T. HIROSE, Y. SATOH, et al., "Effects of Hydrogen Peroxide on Corrosion of Stainless Steel,(IV) Determination of Oxide Film Properties with Multilateral Surface Analyses," Journal of nuclear science and technology, vol. 42, pp. 233-241, 2005.
[16] S. Uchida, T. Satoh, J. Sugama, N. Yamashiro, Y. Morishima, T. Hirose, et al., "Effects of Hydrogen Peroxide on Corrosion of Stainless Steel,(III) Evaluation of Electric Resistance of Oxide Film by Equivalent Circuit Analysis for Frequency Dependent Complex Impedances," Journal of nuclear science and technology, vol. 42, pp. 66-74, 2005.
[17] T. Miyazawa, T. Terachi, S. Uchida, T. Satoh, T. Tsukada, Y. Satoh, et al., "Effects of Hydrogen Peroxide on Corrosion of Stainless Steel,(V) Characterization of Oxide Film with Multilateral Surface Analyses," Journal of Nuclear Science and Technology, vol. 43, pp. 884-895, 2006.
[18] C. S. Kumai and T. M. Devine, "Oxidation of Iron in 288 C, Oxygen-Containing Water," Corrosion, vol. 61, pp. 201-218, 2005.
[19] P. L. Andresen, "Factors Governing the Prediction of LWR Component SCC Behavior From Laboratory Data," Corrosion 99, 1999.
[20] P. L. Andresen, "Emerging Issues and Fundamental Processes in Environmental Cracking in Hot Water," Corrosion, vol. 64, pp. 439-464, 2008.
[21] R. Cowan, "Hydrogen Water Chemistry: A Proven IGSCC Remedy," Nuclear Engineering International, vol. v. 31(378), pp. 26-28, 1986.
[22] M. Indig, "Recent Advances in Measuring ECPs in BWR Systems," in Proc. 4th Int. Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Jekyll Island, USA, NACE (August, 1989), 1989, p. 4.
[23] C. Chao, L. Lin, and D. Macdonald, "A Point Defect Model for Anodic Passive Films I. Film Growth Kinetics," Journal of the Electrochemical Society, vol. 128, pp. 1187-1194, 1981.
[24] D. Macdonald, P.-C. Lu, M. Urquidi-Macdonald, and T.-K. Yeh, "Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in Boiling-Water Reactor Coolant Environments," Corrosion, vol. 52, pp. 768-785, 1996.
[25] B. Stellwag, M. Lasch, and U. Staudt, "Investigations into Alternatives to Hydrogen Water Chemistry in BWR Plants," in 1998 JAIF International Conference on Water Chemistry in Nuclear Power Plants, Proceedings, 1998.
[26] R. Cowan, "The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry," Nuclear energy, vol. 36, pp. 257-264, 1997.
[27] C. C. Lin, F. Smith, and R. Cowan, "Effects of Hydrogen Water Chemistry on Radiation Field Buildup in BWRs," Nuclear engineering and design, vol. 166, pp. 31-36, 1996.
[28] Y.-J. Kim, L. W. Niedrach, M. E. Indig, and P. L. Andresen, "The Application of Noble Metals in Light-Water Reactors," JOM, vol. 44, pp. 14-18, 1992.
[29] S. Hettiarachchi, G. Wozadlo, P. Andresen, T. Diaz, and R. Cowan, "The Concept of Noble Metal Chemical Addition Technology for IGSCC Mitigation of Structural Materials," in Seventh International Symposium on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactors: Proceedings and Symposium Discussions. Volume 2, 1995.
[30] P. Andresen, "Application of Noble Metal Technology for Mitigation of Stress Corrosion Cracking in BWRs," in Seventh International Symposium on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactors: Proceedings and Symposium Discussions. Volume 1, 1995.
[31] Y.-J. Kim, L. Niedrach, and P. Andresen, "Corrosion Potential Behavior of Noble Metal-Modified Alloys in High-Temperature Water," Corrosion, vol. 52, pp. 738-743, 1996.
[32] T. K. Yeh, M. Yu, and D. D. Macdonald, "″The Effect of Catalytic Coatings on IGSCC Mitigation for Boiling Water Reactors Operated under Hydrogen Water Chemistry,″," in Proceedings of the 8 th Intl. Symp. Environ. Degrad. Matls. in Nuclear Power Systems-Water Reactors, 1997, pp. 10-14.
[33] M. Okamura, "Corrosion Mitigation of BWR Structural Materials by the Photoelectric Method with TiO2–Laboratory Experiments of TiO2 Effect on ECP Behavior and Materials Integrity," in Proc. of the 12th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors, 2005.
[34] N. I. Masato Okamura, Junichi Takagi, Kenro Takamori, Junichi Suzuki, Shunichi Suzuki, "SCC Mitigation Method of BWR Structural Materials by TiO2 Technique," presented at the Symposium on Water Chemistry and Corrosion of Nuclear Power Plants in Asia, Taipei, Taiwan, 2007.
[35] N. I. Masato Okamura, Junichi Takagi, Kenro Takamori, Junichi Suzuki, Shunichi Suzuki, "Development of SCC Mitigation Method of BWR Structural Materials by TiO2," presented at the NPC '08, Berlin: International Conference on Water Chemistry of Nuclear Reactor Systems, Berlin, Germany, 2008.
[36] S. Y. Masato Okamura, Junichi Takagi, "Study of TiO2 Deposition Behavior on Structural Materials under High pH Conditions," presented at the Symposium on Water Chemistry and Corrosion in Nuclear Power Plant in Asia, Japan, 2009.
[37] S. Y. Masato Okamura, "Electrochemical Behavior of TiO2 Deposited Stainless Steel in High Temperature Water," presented at the Nuclear Plant Chemistry Conference 2010 (NPC 2010): International Conference on Water Chemistry of Nuclear Reactor Systems and 8th International Radiolysis, Electrochemistry and Materials Performance Workshop, Quebec City, Quebec, Canada, 2010.
[38] S. S. Kenro Takamori, Junichi Suzuki, Yoshiaki Ishii, "Corrosion Mitigation of BWR Structural Materials by the Photoelectric Method with TiO2 - A SCC Mitigation Technique and its Feasibility Evaluation -," presented at the The 12th International Conference on Environmental Degradation of Materials in Nuclear Power System – Water Reactors –, Salt Lake City, Utah., 2005.
[39] J. S. Kenro Takamori, Shunichi Suzuki, Akihiro Miyazaki, Masato Okamura, Tetsuo Osato, Nagayoshi Ichikawa, Hidehiro Urata and Junichi Takagi, "Development of BWR Components SCC Mitigation Method By the TiO2 Treating Technique," presented at the 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, Whistler, British Columbia, 2007.
[40] W. Zhang, Y. He, M. Zhang, Z. Yin, and Q. Chen, "Raman Scattering Study on Anatase TiO2 Nanocrystals," Journal of Physics D: Applied Physics, vol. 33, p. 912, 2000.
[41] P. Jayaweera, S. Hettiarachchi, and H. Ocken, "Determination of the High Temperature Zeta Potential and pH of Zero Charge of Some Transition Metal Oxides," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 85, pp. 19-27, 1994.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 鉑覆膜之敏化304不鏽鋼於高溫水中應力腐蝕龜裂之研究
2. 在高溫水環境中不同氧化膜結構下白金被覆於304不鏽鋼之電化學行為研究
3. 二氧化鈦被覆對304不□鋼在模擬沸水式反應器環境的防蝕效益研究
4. 二氧化鈦被覆對304不鏽鋼在模擬沸水式反應器環境的防蝕效益研究
5. 高溫純水中不同溫度下鉑金被覆於304不鏽鋼之電化學行為研究
6. 304不鏽鋼、304低碳不鏽鋼與316低碳不鏽鋼於模擬沸水式反應器起爐過程中不同水化學環境下之電化學量測
7. 利用成長於碳布的奈米碳管為載體之直接甲醇燃料電池鉑與鉑釕觸媒之電化學及結構特性分析
8. 直接甲醇燃料電池陽極觸媒在不同製備條件的特性分析
9. 沸水式反應器於加氫水化學狀態下實施催化性與抑制性被覆之防蝕效益研究
10. 應用在燃料電池的甲醇濃度感測方法研究
11. 動態氧化鋯被覆處理之敏化304不□鋼於高溫純水環境之沿晶應力腐蝕裂縫成長速率研究
12. 硫酸溶液中過氧化氫濃度監測電極之開發研究
13. 氧化鋯被覆與不同304不□鋼氧化膜對於溶氫與溶氧在模擬沸水式反應器環境中的電化學特性影響研究
14. 不同醇類添加應用於直接甲醇燃料電池陽極觸媒製備後之電池效能差異
15. 氧化鋯抑制性被覆及氧化鋅處理之敏化304不□鋼在高溫純水環境中的電化學行為研究
 
* *