帳號:guest(18.191.132.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴建任
作者(外文):Lai, Jian Ren
論文名稱(中文):多孔矽蝕刻製成具有光子晶體結構之高靈敏度重金屬檢測器
論文名稱(外文):Porous Silicon Based Photonic-Sensor for High Sensitive Heavy Metal Ion Detecrtion.
指導教授(中文):王本誠
曾繁根
指導教授(外文):Wang, Pen Cheng
Tseng, Fan Gang
口試委員(中文):魏培坤
林凡異
口試委員(外文):Wei, Pei Kuen
Lin, Fan Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011516
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:84
中文關鍵詞:傅立葉紅外光譜儀多孔矽蝕刻重金屬檢測光子晶體
外文關鍵詞:FTIRPorous silicon etchingheavy metal ion detectionphotonic crystal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:309
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
水為人類生活中不可或缺的物質,人們生活的聚落大多依靠著水源區而成長。人類的社會不斷的進步從最初的農業社會經過工業革命直到現在,隨著工業與科技的成長人們過著比以往相對富裕的生活。但在工業的蓬勃發展也伴隨著許多環境汙染的產生,例如二氧化碳造成全球暖化、工業排放廢水造成各種形式的水汙染等等。這都漸漸的傷害著我們居住的環境。
在水汙染中的重金屬汙染在70~80年代更是打擊台灣的相關農漁牧業,如砷、鎘、汞、鉛等重金屬汙染。有鑑於此,在本研究目的為製造相關重金屬在水汙染的檢測機制。目前的檢測機制大多利用較昂貴的儀器設備或是利用步驟繁複的化學滴定方式來進行水溶液中的重金屬分析。在本實驗中第一代晶片具有一維光子晶體特性並利用簡便的化學合成及表面修飾使其在傅立葉紅外線光譜儀(FTIR)有檢測重金屬的訊號,並且達到定性與定量的效果。第二代晶片為可見光波段之光子晶體搭配電化學還原將待測金屬離子直接在多孔矽孔洞中析出造成較大的折射率改變,達到增強訊號強度與檢測極限之效果。
Water is essential to human life material, settlement of people's lives as much dependent on the water area and growth. Human society continues to progress from the first agricultural society through the industrial revolution until now, people with the growth of industry and technology have had a relatively affluent life than ever before. But in the booming industry it has been accompanied by a number of environmental pollution produced, such as carbon dioxide cause global warming caused by industrial waste water in various forms of water pollution and so on. This will gradually hurting the environment we live.
The heavy metal pollution in water pollution in 70 to 80 years is relevant agricultural, fishery and animal husbandry against Taiwan, such as arsenic, cadmium, mercury, lead and heavy metal pollution. In view of this, the aim of this study is related to the manufacture of heavy metals in water pollution detection mechanism. The current detection mechanism mostly use the more expensive equipment or the use of complex chemical titration step approach to the analysis of heavy metals in aqueous solution. In this experiment, the first generation of wafer-dimensional photonic crystal having a characteristic and by a simple chemical synthesis and surface modification of it in Fourier infrared spectroscopy (FTIR) for detecting signals of heavy metals, and to achieve qualitative and quantitative results. The second generation of photonic crystal wafer as visible light with a wavelength of electrochemical reduction of metal ions to be measured directly in the porous silicon precipitates hole caused large refractive index change, to enhance the signal strength and the detection limit of the effect.
The first two chapters illustrate the application of this study motive and related experiments. Today introduced the relevant heavy metal detection equipment, introduces the basic principles of photonic crystals with porous silicon etching works. The third and fourth chapters compared with experimental design processes and related process steps. Fifth and sixth chapters, compared with results of the discussions and conclusions. Literature review is included in Chapter VII.
致謝 i
摘要 ii
Abstract iii
總目錄 v
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1傅立葉轉換紅外光譜儀介紹[5] 4
2.1.1 傅立葉紅外線光譜儀基本原理 5
2.1.2 傅立葉紅外光譜儀偵測方式 6
2.2光子晶體原理與介紹 8
2.2.1光子晶體簡介 8
2.2.2光子晶體與能隙 10
2.2.3含缺陷一維光子晶體的結構與光譜特性 11
2.3 重金屬檢測方式 14
2.3.1 質譜儀(Mass Spectrometry)[12] 14
2.3.2原子吸收光譜(atomic absorption spectroscopy) 15
2.3.3 高效能液相層析儀(HPLC) 15
2.4 多孔隙蝕刻原理簡介 17
2.4.1 電化學蝕刻原理 17
2.4.2 矽溶解反應 18
2.4.3 多孔矽形成機制 20
2.4.4多孔矽蝕刻建構光子晶體應用 22
2.5光學感測器之應用 27
2.5-1 傳統干涉式生醫感測器 27
2.5-2 紅外光波段光子晶體應用 32
第三章 實驗設計與方法 34
3.1實驗流程設計與架構 34
3.2第一代紅外光波段光子晶體的製程與檢測方式 34
3.2.1 多孔矽蝕刻建構光子晶體結構 34
3.2.1單層多孔矽蝕刻 36
3.2.2多層多孔矽蝕刻與週期性結構光子晶體製成 36
3.2.3光譜隨溶液濃度改變而產生紅位移(red shift) 37
3.2.4 EDTA與重金屬螯合產生而產生特徵峰改變 37
3.3 第二代可見光波段光子晶體製程與檢測方式 38
3.3.1 多孔隙蝕刻建構光子晶體結構 38
3.3.2 量測方式 38
3.3.2 多孔矽層之表面處理 39
3.4 實驗材料與儀器 39
3.4.1實驗儀器 39
第四章 實驗步驟 41
4.1 第一代晶片:多孔矽蝕刻建構紅外光波段光子晶體結構 41
4.1.1 單層多孔矽蝕刻 41
4.1.2多層多孔矽與光子晶體結構蝕刻 42
4.1.3多孔矽表面犧牲層去除 43
4.2表面處理 43
4.2.1 表面熱氧化 46
4.2.2 試片清潔 46
4.2.3硫酸親水處理與氧電漿親水處理 46
4.2.4試片表面氨基修飾 47
4.2.5 EDTA表面接合 47
4.3傅立葉紅外線光譜儀檢測與比較 48
4.3.1光學系統 48
4.3.2樣品分析 48
4.4第二代晶片: 多孔矽蝕刻建構可見光波段光子晶體結構 50
4.4.1晶片結構設定與預處理 50
4.4.2可見光光子晶體基本效能測試 52
第五章 結果與討論 53
5.1多孔矽蝕刻建構光子晶體結構 53
5.1.1單層多孔隙蝕刻 53
5.1.2多層多孔隙蝕刻與光子晶體製程 54
5.1.3多孔隙表面犧牲層去除 57
5.2表面處理 58
5.2.1熱氧化處理 58
5.2.2晶片親水與表面修飾 59
5.3 第一代紅外光波段分析結果 60
5.3.1 光子晶體晶片紅外光譜比較 60
5.3.2濕式檢測結果 63
5.3.3乾式分析結果 65
5.4 第二代可見光波段分析結果 67
5.4.1 多孔矽蝕刻參數確認 67
5.4.2 多孔矽層折射率分析 68
5.4.3 可見光光子晶體建構 71
5.4.4 可見光光子晶體效能測試 77
第六章 結論 81
第七章 未來工作 82
第八章 參考文獻 83

1. Johannes Godt, F.S., Christian Grosse-Siestrup, Vera Esche, Paul Brandenburg, Andrea Reich and David A Groneberg, The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 2006: p. 1-22.
2. Järup, L., Hazards of heavy metal contamination. British Medical Bulletin 2003. 68: p. 167-182.
3. 重金屬檢測方法總則.
4. Torunn.Berg, O.R., ATMOSPHERIC TRACE ELEMENT DEPOSITION: PRINCIPAL COMPONENT ANALYSIS OF ICP-MS DATA FROM MOSS SAMPLES Envirmmental Polhrtion 1995. 88: p. 67-77.
5. Doyle, W.M., Principles and applications of Fourier transform infrared(FTIR) process analysis. 1991.
6. P. Vukusic1*, J.R.S., C. R. Lawrence2 and R. J. Wootton3, Quantified interference and diffraction in single Morpho butterfly scales. The Royal Society, 1999. 266: p. 1403-1411.
7. John, S., Strong localization of photons in certain disordered dielectric superlattices. PHYSICAL REVIEW LETTERS, 1987. 58.
8. Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett, 1987. 58: p. 2059.
9. Luan, C.-C.C.P.-G., Photonic Crystals. Wu-Nan culture enterprise, 2005.
10. R. D. Meade, a.J.N.W.J.D.J., Photonic Crystals. Princeton University Press. 2008.
11. Farid A. Harraza, Said M. El-Sheikha, Tetsuo Sakkab, Yukio H. Ogata, Cylindrical pore arrays in silicon with intermediate nano-sizes: A template for nanofabrication and multilayer applications. Electrochimica Acta, 2008. 53: p. 6444-6451.
12. Houk, R.S., Mass spectrometry of inductivity coupled plasmas. ANALYTICAL CHEMISTRY, 1986. 58: p. 97-105.
13. Turner, D.B., Electropolishing silicon in hydrofluoric acid solutions,. Electrochemical Society, 1958. 105.
14. Collins, R.L.S.a.S.D., Porous Silicon Formation Mechanisms. Journal of Applied Physics, 1992. 71: p. 1-22.
15. Gosele, V.L.a.U., Porous Silicon Formation - a Quantum Wire Effect. Applied Physics Letters, 1991. 58: p. 856-858.
16. Canham, A.G.C.a.L.T., Visible-Light Emission Due to Quantum Size Effects in Highly Porous Crystalline Silicon. Nature, 1991. 353: p. 335-338.
17. Huimin Ouyang, M.C., Romain Viard, Benjamin L. Miller, and Philippe M. Fauchet, Macroporous Silicon Microcavities for Macromolecule Detection. Advanced Functional Materials, 2005. 15: p. 1851-1859.
18. Minh-Hang Nguyen , H.-J., Jen-KueiWu, Yi-ShiuanWu Ming-Chang Lee, Fan-GangTseng, Cascaded nano-porous silicon for high sensitive biosensing and functional group distinguishing by Mid-IR spectra. Biosensors and Bioelectronics, 2013. 47: p. 80-85.
19. Nalin H. Maniya, S.R.P., Z.V.P. Murthy, Simulation and fabrication study of porous silicon photonic crystal. Optik, 2014. 125: p. 828-831.
20. VSY Lin, K.M., KPS Dancil, MJ Sailor, MR Ghadiri, A porous silicon-based optical interferometric biosensor. Science, 1997. 278: p. 840-843.
21. Sha Li, J.H.a.L.C., A porous silicon optical microcavity for sensitive bacteria detection. Nanotechnology, 2011. 22.
22. Andreas Janshoff, K.-P.S.D., Claudia Steinem, Douglas P. Greiner,, Macroporous p-Type Silicon Fabry-Perot Layers. Fabrication, Characterization, and Applications in Biosensing. J. Am. Chem. Soc, 1998. 120: p. 12108-12116.
23. H. Mabuchi, Q.A.T., M. S. Chapman, and H. J. Kimble, Real-time detection of individual atoms falling through a high-finesse optical cavity. Optics Letters, 1996. 1996: p. 1393-1395.
24. Andreas Janshoff , K.-P.S.D., Claudia Steinem , Douglas P. Greiner ,, Macroporous p-Type Silicon Fabry-Perot Layers. Fabrication, Characterization, and Applications in Biosensing. J. Am. Chem. Soc, 1998. 120: p. 12108-12116.
25. Jung-Chul Lee, J.Y.A.a.-W.K., Application of anodized aluminium oxide as a biochip substrate for a Fabry–Perot interferometer. Journal of Chemical Technology and Biotechnology, 2007. 82: p. 1045-1052.
26. Simonescu, C.M., Application of FTIR Spectroscopy in Environmental Studies.
27. 陳志恆.吳柏昌, 可調式液晶與光子晶體複合結構的光電特性與應用.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *