帳號:guest(18.118.30.253)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張閎皓
作者(外文):Chang, Hung Hao
論文名稱(中文):濺鍍於D2鋼上氮化鋯鍍層之機械性質研究
論文名稱(外文):Mechanical Properties of Thick ZrN Coatings on D2 Steel Deposited by Unbalanced Magnetron Sputtering
指導教授(中文):喻冀平
黃嘉宏
指導教授(外文):Yu, Ge Ping
Huang, Jia Hong
口試委員(中文):李志偉
林郁洧
口試委員(外文):Lee, Jyh Wei
Lin, Yu Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011511
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:98
中文關鍵詞:鍍層氮化鋯厚膜附著性磨耗
外文關鍵詞:CoatingZrNThick coatingAdhesionWear
相關次數:
  • 推薦推薦:0
  • 點閱點閱:572
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
本研究的目的為在D2工具鋼上鍍製氮化鋯厚膜,並研究厚膜之結構與機械性質隨著厚度的變化。實驗中控制的製程參數為鍍膜腔體和渦輪分子幫浦之間閘閥的開口大小,以及鍍膜的時間長短,而鍍膜腔體內氣體的抽氣速率隨著閘閥開口大小而改變。實驗中採用兩組製程參數,分別為全開閥及半開閥。實驗結果顯示膜厚超過6微米的氮化鋯厚膜成功被鍍製在D2工具鋼基材上。所有試片的硬度介於26.0-27.7GPa之間,並且不隨膜厚而改變。半開閥系列具有較高的附著性以及耐磨耗性,這可能歸因於半開閥製程中較高的氣體離化率造成排列較佳的厚膜結構,並且有助於鍍膜過程中厚膜內的應力釋放。然而,在兩種鍍膜製程中皆發生了靶材毒化現象,並且導致電弧產生的微粒埋入厚膜中。在厚膜內接近基材的部分受到微粒的影響較少,結構較為緊密。反之,埋入厚膜中的微粒造成遠離基材的上層區域形成孔洞並且結構較為鬆散。由於厚度較大的試片內部結構鬆散的部分較多,因此試片內的殘餘應力隨著厚度上升而減小。並且,由於結構鬆散的區域對磨耗的抵抗能力較差,因此ZrN厚膜的磨耗率隨著厚度上升而增加。本實驗採用的兩種製程方式相較之下,半開閥製程能以較快的鍍膜速率,並且在較低的渦輪分子幫浦消耗能量以及工作溫度下鍍製出高品質的ZrN厚膜,因此較為貼近工業應用的需求。
The objective of this study was to deposit thick ZrN coatings on AISI D2 steel substrates, and to investigate the structure and properties of the ZrN coatings with varying thickness. The controlling deposition parameters were the opening level of the gate valve between the deposition chamber and the turbomolecular pump (TP), and the deposition duration. The pumping speed of the gas inside the deposition chamber was changed with the different opening level of gate valve. Two deposition conditions were adopted, which were the full opening of gate valve (FV) and half opening of gate valve (HV) conditions. The results showed that ZrN coatings with thickness over 6μm were successfully deposited on the D2 steel substrates. The hardness of the ZrN coatings was ranged from 26.0 to 27.7 GPa without significant variation with thickness. The HV-series possessed higher adhesion strength and wear resistance. This could be due to the higher gas ionization rate in HV-condition, which promoted the stress relief during deposition and leaded to better-arranged structure. However, target poisoning occurred in both deposition conditions and the macro-particles generated from arcing were buried into the coatings. The region near the substrate was less affected by the particles and therefore denser . By contrast, the buried particles resulted in the internal voids and loose packed structure in the upper region of coatings which is away from the substrate. Due to larger portion of loose packed region in the thicker coatings, the residual stress of the ZrN coatings was decreased with increasing thickness. Furthermore, the loose packed region was less resistant to wear, leading to the increasing wear rate with thickness. In comparison of the two deposition conditions, ZrN coatings with higher quality could be produced by HV-condition with higher deposition rate, lower energy cost and lower working temperature of TP, indicating that HV-condition was more suitable for industrial application.
致謝 i
摘要 iii
Abstract iv
Contents v
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Literature review 2
2.1 Deposition Method 2
2.2 Characteristics of ZrN 5
2.3 Effect of Deposition Parameters 8
2.4 Mechanical Properties of ZrN Coatings 9
2.4.1 Tribological Behavior of ZrN Coatings 9
2.4.2 Adhesion Strength 9
2.4.3 Wear Resistance 11
Chapter 3 Experimental Details 13
3.1 Substrate Preparation 13
3.2 Deposition Process 13
3.3 Characterization Methods of Structure and Composition 18
3.3.1 X-ray Photoelectron Spectroscopy (XPS) 18
3.3.2 X-Ray Diffraction (XRD) and Grazing Incidence XRD (GIXRD) 20
3.3.3 Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) 21
3.3.4 Atomic Force Microscopy (AFM) 21
3.4 Characterization Methods of Properties 21
3.4.1 Hardness 22
3.4.2 Residual Stress 22
3.4.3 Scratch Test 27
3.4.4 Wear Test 29
3.4.5 Salt Spray Test 31
Chapter 4 Results 32
4.1 Structure and Composition 35
4.1.1 Composition 35
4.1.2 Structure 35
4.2 Properties 45
4.2.1 Hardness 45
4.2.2 Residual Stress 45
4.2.3 Stress Gradient of FV660 and HV660 45
4.2.4 Scratch Test 50
4.2.5 Wear Test 54
4.2.6 Salt Spray Test 61
Chapter 5 Discussion 62
5.1 Target Poisoning 62
5.2 Effect of Thickness and Residual Stress on the Structure and Properties of ZrN coatings 66
5.2.1 Gas Ionization Rate during Deposition 66
5.2.2 Residual Stress 67
5.2.3 Adhesion Strength 68
5.2.4 Wear Rate 69
5.3 Comparison Between ZrN and TiN Thick Coatings 71
5.4 Corrosion Behavior 72
5.5 Comparison of the Two Deposition Methods 73
Chapter 6 Conclusions 75
Future Work 76
References 77
Appendix A 85
Appendix B 87
Appendix C 89
Appendix D 92
Appendix E 94
Appendix F 95
Appendix G 97

[1] H. Holleck, Material selection for hard coatings, J. Vac. Sci. Technol. A., 4 (1986) 2661-2669.
[2] Z.P. Huang, Y. Sun, T. Bell, Friction behaviour of TiN, CrN and (TiAl)N coatings, Wear, 173 (1994) 13-20.
[3] H.A. Jehn, Improvement of the corrosion resistance of PVD hard coating–substrate systems, Surf. Coat. Technol., 125 (2000) 212-217.
[4] P.C. Johnson, H. Randhawa, Zirconium nitride films prepared by cathodic arc plasma deposition process, Surf. Coat. Technol., 33 (1987) 53-62.
[5] P. Panjan, B. Navinšek, A. Žabkar, V. Marinković, D. Mandrino, J. Fišer, Structural analysis of ZrN and TiN films prepared by reactive plasma beam deposition, Thin Solid Films, 228 (1993) 233-237.
[6] D. Jianxin, L. Jianhua, Z. Jinlong, S. Wenlong, N. Ming, Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes, Wear, 264 (2008) 298-307.
[7] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Technol., 41 (1990) 191-204.
[8] L. van Leaven, M.N. Alias, R. Brown, Corrosion behavior of ion plated and implated films, Surf. Coat. Technol., 53 (1992) 25-34.
[9] L.E. Toth, Transition Metal Carbides and Nitrides, Refractory Materials, Academic Press, New York, 1971.
[10] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Material properties of ZrN film on silicon prepared by low-energy ion-assisted deposition, Surf. Coat. Technol., 66 (1994) 318-322.
[11] B.-H. Moon, H.-C. Choe, W.A. Brantley, Surface characteristics of TiN/ZrN coated nanotubular structure on the Ti–35Ta–xHf alloy for bio-implant applications, Appl. Surf. Sci., 258 (2012) 2088-2092.
[12] C. A. Carrasco, V. Vergara S, R. Benavente G, N. Mingolo, J.C. Rı´os, The relationship between residual stress and process parameters in TiN coatings on copper alloy substrates, Mater. Charact., 48 (2002) 81-88.
[13] A.E. Reiter, V.H. Derflinger, B. Hanselmann, T. Bachmann, B. Sartory, Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation, Surf. Coat. Technol., 200 (2005) 2114-2122.
[14] S. Boelens, H. Veltrop, Hard coatings of TiN, (TiHf)N and (TiNb)N deposited by random and steered arc evaporation, Surf. Coat. Technol., 33 (1987) 63-71.
[15] J. Romero, M.A. Gómez, J. Esteve, F. Montalà, L. Carreras, M. Grifol, A. Lousa, CrAlN coatings deposited by cathodic arc evaporation at different substrate bias, Thin Solid Films, 515 (2006) 113-117.
[16] J. Vyskočil, J. Musil, Cathodic arc evaporation in thin film technology, J. Vac. Sci. Technol. A., 10 (1992) 1740-1748.
[17] M. Odén, C. Ericsson, G. Håkansson, H. Ljungcrantz, Microstructure and mechanical behavior of arc-evaporated Cr–N coatings, Surf. Coat. Technol., 114 (1999) 39-51.
[18] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56 (2000) 159-172.
[19] J. Musil, V. Valvoda, S. Kadlec, J. Vyskocil, IPAT 87: Proceeds of the 6th International Conference on Ion and Plasma Assisted Techniques, Brighton UK, DOI (1987) 184-189.
[20] T. Larsson, H.O. Blom, C. Nender, S. Berg, A physical model for eliminating instabilities in reactive sputtering, J. Vac. Sci. Technol. A., 6 (1988) 1832-1836.
[21] J. Musil, P. Baroch, J. Vlček, K.H. Nam, J.G. Han, Reactive magnetron sputtering of thin films: present status and trends, Thin Solid Films, 475 (2005) 208-218.
[22] A. Rizk, S.B. Youssef, S.K. Habib, Glow discharge characteristics when magnetron sputtering copper in different plasma atmospheres operated at low input power, Vacuum, 38 (1988) 93-95.
[23] S. Schiller, U. Heisig, K. Steinfelder, J. Strumpfel, W. Sieber, Reactive DC high-rate sputtering with the magnetron-plasmatron for industrial applications, Vakuum-Tech., 30 (1981) 3-14.
[24] J.L. Vossen, S. Krommenhoek, V.A. Koss, Some experiments that provide direct visualization of reactive sputtering phenomena, J. Vac. Sci. Technol. A., 9 (1991) 600-603.
[25] I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, Surf. Coat. Technol., 127 (2000) 203-218.
[26] L. Combadiere, J. Machet, Study and control of both target-poisoning mechanisms and reactive phenomenon in reactive planar magnetron cathodic sputtering of TiN, Surf. Coat. Technol., 82 (1996) 145-157.
[27] K. Koski, J. Hölsä, P. Juliet, Surface defects and arc generation in reactive magnetron sputtering of aluminium oxide thin films, Surf. Coat. Technol., 115 (1999) 163-171.
[28] J. Deng, J. Liu, J. Zhao, W. Song, Wear mechanisms of PVD ZrN coated tools in machining, Int. J. Refract. Met. H., 26 (2008) 164-172.
[29] M.B. Takeyama, A. Noya, K. Sakanishi, Diffusion barrier properties of ZrN films in the Cu/Si contact systems, J. Vac. Sci. Technol. B., 18 (2000) 1333-1337.
[30] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surf. Coat. Technol., 112 (1999) 108-113.
[31] Z. Wokulski, Mechanical Properties of TiN Whiskers, Phys. Status Solidi A, 120 (1990) 175-184.
[32] J.E. Sundgren, Structure and properties of TiN coatings, Thin Solid Films, 128 (1985) 21-44.
[33] W.-J. Chou, G.-P. Yu, J.-H. Huang, Deposition of TiN thin films on Si(100) by HCD ion plating, Surf. Coat. Technol., 140 (2001) 206-214.
[34] JCPDS PDF#650961, DOI.
[35] J. E. Hove, W. C. Riley, Modern Ceramic: Some Principles and Concepts, John Wiley, New York, 1965.
[36] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol., 191 (2005) 17-24.
[37] E. Török, A.J. Perry, L. Chollet, W.D. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 153 (1987) 37-43.
[38] A.J. Perry, V. Valvoda, D. Rafaja, X-ray residual stress measurement in TiN, ZrN and HfN films using the Seemann-Bohlin method, Thin Solid Films, 214 (1992) 169-174.
[39] A.J. Perry, A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films, 193–194, Part 1 (1990) 463-471.
[40] J. Ping, M. Shigeo, Evaluation of Internal Stress in Reactively Sputter-Deposited ZrN Thin Films, Jpn. J. Appl. Phys., 30 (1991) 1463.
[41] H. Okamoto, N-Zr (Nitrogen-Zirconium), JPED, 27 (2006) 551-551.
[42] M. Del Re, R. Gouttebaron, J.P. Dauchot, P. Leclère, G. Terwagne, M. Hecq, Study of ZrN layers deposited by reactive magnetron sputtering, Surf. Coat. Technol., 174-175 (2003) 240-245.
[43] D. Pilloud, A.S. Dehlinger, J.F. Pierson, A. Roman, L. Pichon, Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics, Surf. Coat. Technol., 174–175 (2003) 338-344.
[44] C.-P. Liu, H.-G. Yang, Deposition temperature and thickness effects on the characteristics of dc-sputtered ZrNx films, Mater. Chem. Phys., 86 (2004) 370-374.
[45] W.D. Sproul, P.J. Rudnik, C.A. Gogol, The effect of target power on the nitrogen partial pressure level and hardness of reactively sputtered titanium nitride coatings, Thin Solid Films, 171 (1989) 171-181.
[46] C.-I. Chiu, Effect of processing parameters on wear resistance and mechanical properties of thick TiN coatings on D2 steel deposited by unbalanced magnetron sputtering, Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, 2014.
[47] J. Gu, G. Barber, S. Tung, R.-J. Gu, Tool life and wear mechanism of uncoated and coated milling inserts, Wear, 225–229, Part 1 (1999) 273-284.
[48] J. Deng, J. Liu, Z. Ding, M. Niu, Unlubricated friction and wear behaviors of ZrN coatings against hardened steel, Mater. Design, 29 (2008) 1828-1834.
[49] J.M. Molarius, A.S. Korhonen, E. Harju, R. Lappalainen, Comparison of cutting performance of ion-plated NbN, ZrN, TiN and (Ti, Al)N coatings, Surf. Coat. Technol., 33 (1987) 117-132.
[50] E. Gariboldi, Drilling a magnesium alloy using PVD coated twist drills, J. Mater. Process. Tech., 134 (2003) 287-295.
[51] S.J. Bull, E.G. Berasetegui, An overview of the potential of quantitative coating adhesion measurement by scratch testing, Tribol. Int., 39 (2006) 99-114.
[52] P.J. Burnett, D.S. Rickerby, The relationship between hardness and scratch adhession, Thin Solid Films, 154 (1987) 403-416.
[53] J. Valli, U. Mäkelä, A. Matthews, V. Murawa, TiN coating adhesion studies using the scratch test method, J. Vac. Sci. Technol. A., 3 (1985) 2411-2414.
[54] P. Hedenqvist, M. Olsson, S. Jacobson, S. Söderberg, Failure mode analysis of TiN-coated high speed steel: In situ scratch adhesion testing in the scanning electron microscope, Surf. Coat. Technol., 41 (1990) 31-49.
[55] P.A. Steinmann, Y. Tardy, H.E. Hintermann, Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load, Thin Solid Films, 154 (1987) 333-349.
[56] J. Takadoum, H.H. Bennani, Influence of substrate roughness and coating thickness on adhesion, friction and wear TiN films, Surf. Coat. Technol., 96 (1997) 272.
[57] D. Valerini, M.A. Signore, L. Tapfer, E. Piscopiello, U. Galietti, A. Rizzo, Adhesion and wear of ZrN films sputtered on tungsten carbide substrates, Thin Solid Films, 538 (2013) 42-47.
[58] T. Polcar, N.M.G. Parreira, R. Novák, Friction and wear behaviour of CrN coating at temperatures up to 500 °C, Surf. Coat. Technol., 201 (2007) 5228-5235.
[59] S. Wilson, A.T. Alpas, Effect of temperature and sliding velocity on TiN coating wear, Surf. Coat. Technol., 94–95 (1997) 53-59.
[60] S. Wilson, A.T. Alpas, TiN coating wear mechanisms in dry sliding contact against high speed steel, Surf. Coat. Technol., 108–109 (1998) 369-376.
[61] S. Wilson, A.T. Alpas, Wear mechanism maps for TiN-coated high speed steel, Surf. Coat. Technol., 120–121 (1999) 519-527.
[62] T. Polcar, N.M.G. Parreira, A. Cavaleiro, Tribological characterization of tungsten nitride coatings deposited by reactive magnetron sputtering, Wear, 262 (2007) 655-665.
[63] D.A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B., 5 (1972) 4709-4714.
[64] M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, X-ray photoelectron spectroscopy analysis of zirconium nitride-like films prepared on Si(100) substrates by ion beam assisted deposition, Surf. Coat. Technol., 202 (2008) 3129-3135.
[65] I. Milošev, H.H. Strehblow, M. Gaberšček, B. Navinšek, Electrochemical Oxidation of ZrN Hard (PVD) Coatings Studied by XPS, Surf. Interface Anal., 24 (1996) 448-458.
[66] C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, An XPS study of the interaction of oxygen with zirconium, Surf. Sci., 218 (1989) 331-345.
[67] P. Scherrer, Gött. Nachr., 2 (1918) 98.
[68] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, New York, 1958.
[69] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
[70] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78.
[71] B.B. He, Two-Dimensional X-Ray Diffraction, John Wiley & Sons, Inc., New Jersey, 2009, pp. 85-132.
[72] C.L. Azanza Ricardo, M. D'Incau, P. Scardi, Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients, J. Appl. Crystallogr, 40 (2007) 675-683.
[73] J. Kõo, J. Valgur, Layer growing/removing method for the determination of residual stresses in thin inhomogeneous discs, Materials science forum, Trans Tech Publ, 2000, pp. 89-94.
[74] I. Kraus, G. Gosmanová, On X-ray measurements of residual stresses in materials with lattice strain gradient, Czech. J. Phys., 39 (1989) 751-756.
[75] V. Hauk, B. Krüger, A new approach to evaluate steep stress gradients principally using layer removal, Materials science forum, Trans Tech Publ, 2000, pp. 80-82.
[76] H.K. Tönshoff, J. Plöger, H. Seegers, Determination of residual stress gradients in brittle materials using an improved spline algorithm, Materials science forum, Trans Tech Publ, 2000, pp. 83-88.
[77] A.J. Perry, J.A. Sue, P.J. Martin, Practical measurement of the residual stress in coatings, Surf. Coat. Technol., 81 (1996) 17-28.
[78] S. Zhang, D. Sun, Y. Fu, H. Du, Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films, Thin Solid Films, 447–448 (2004) 462-467.
[79] ASTM standards, Section 3, 1996, B117, p.4, and G85, 0.350.
[80] JCPDS pdf #350753, DOI.
[81] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si(100), Thin Solid Films, 405 (2002) 162-169.
[82] J.H. Huang, C.Y. Hsu, S.S. Chen, G.P. Yu, Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel substrates, Mater. Chem. Phys., 77 (2003) 14-21.
[83] J.-H. Huang, H.-C. Yang, X.-J. Guo, G.-P. Yu, Effect of film thickness on the structure and properties of nanocrystalline ZrN thin films produced by ion plating, Surf. Coat. Technol., 195 (2005) 204-213.
[84] J.-H. Huang, C.-H. Ho, G.-P. Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si (100) and stainless steel substrates, Mater. Chem. Phys., 102 (2007) 31-38.
[85] http://henke.lbl.gov/optical_constants/atten2.html.
[86] http://webbook.nist.gov/cgi/cbook.cgi?Name=ZrN&Units=SI&cTC=on#Refs.
[87] http://webbook.nist.gov/cgi/cbook.cgi?Name=Titanium+nitride&Units=SI&cTC=on.
[88] A. Ruden, J.M. Gonzalez, J.S. Restrepo, M.F. Cano, F. Sequeda, Tribology of ZrN, CrN and TiAlN thin films deposited by reactive magnetron sputtering, Dyna, 80 (2013) 95-100.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *