帳號:guest(18.118.2.111)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭昆麟
作者(外文):Kuo, Kun Lin
論文名稱(中文):真空熱處理之氮化鋯薄膜氧化行為與防蝕性之探討
論文名稱(外文):The Oxidation Behavior and Corrosion Resistance of ZrN Thin Films Annealed in Vacuum
指導教授(中文):黃嘉宏
喻冀平
指導教授(外文):Huang, Jia Hong
Yu, Ge Ping
口試委員(中文):董曉明
呂福興
口試委員(外文):Tung, Hsiao Ming
Lu, Fu Hsing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011510
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:120
中文關鍵詞:氮化鋯氧化鋯熱處理防蝕性氧化行為
外文關鍵詞:zirconium nitridezirconium oxideheat treatmentcorrosion resistanceoxidation behavior
相關次數:
  • 推薦推薦:0
  • 點閱點閱:826
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
本研究的目的在於探討利用兩種鍍膜系統鍍氮化鋯薄膜於不鏽鋼上經真空熱處理後的氧化行為與防蝕性質。首先利用中空陰極放電離子覆膜系統及非平衡磁控濺鍍系統將氮化鋯薄膜鍍著於AISI 304 不鏽鋼基材上,之後將兩種試片同時於1000 °C、真空(4×10-6 Torr)的環境下,進行1到4小時的熱處理。由X光繞射圖顯示,試片即使經過長達4小時的熱處理,氮化鋯仍為主要相。此外,利用非平衡磁控濺鍍系統所鍍之氮化鋯薄膜其晶粒較利用中空陰極放電離子覆膜系統所鍍之薄膜大,使得兩者氧化後之薄膜表面晶粒大小也有相似結果,而晶粒大小也會影響熱處理後氧化相之生成。氧化後薄膜表面及膜與基材的界面附近分別形成外、內氧化層,推測是由於氧氣同時由薄膜表面及膜與基材介面的邊緣擴散進膜內而形成。動態極化掃描的結果顯示經氮化鋯覆膜之不鏽鋼氧化後展現極佳的抗蝕性,且試片腐蝕電流密度至多可下降至1000倍。經過500小時的鹽霧測試後,熱處理後之試片表面腐蝕面積均在6.7 %以下,且非平衡磁控濺鍍系統所鍍之薄膜抗蝕性更佳。另外,利用非平衡磁控濺鍍系統所鍍之氮化鋯薄膜經熱處理所得之全氧化試片,經過動態極化掃描與500小時鹽霧測試後展現極佳抗蝕性且薄膜也不會有脫落的現象,推測是經過熱處理後在膜與基材界面處產生的交互擴散層提高膜對基材的附著性。本研究結果顯示利用非平衡磁控濺鍍與中空陰極放電離子覆膜系統所鍍之氮化鋯薄膜均可藉由真空熱處理來成長氧化層,因此,非平衡磁控濺鍍可以取代中空陰極放電離子覆膜系統鍍製氮化鋯薄膜於不鏽鋼上來生產抗蝕性極佳之氧化層。
The purpose of this study was to investigate the oxidation behavior and corrosion resistance of the vacuum annealed ZrN-coated stainless steel (SS) deposited by two deposition methods. ZrN thin films were deposited on AISI 304SS by hollow cathode discharge ion-plating (HCD-IP) and unbalanced magnetron sputtering (UBMS). Afterwards, the specimens were annealed at 1000°C in vacuum (4×10-6 Torr) for a duration ranging from 1 to 4 hr. The XRD results indicated that ZrN remained as the major phase in the oxidized thin films even after heat treating at 1000 °C for 4 hr in vacuum. Since the grain size of the as-deposited ZrN films by UBMS was larger than that by HCD-IP, the surface grain size of the oxidized film showed the similar results, which also affected the phase formation after vacuum annealing. The oxidized ZrN thin film on 304SS formed two oxide layers, the outer layer on the film surface and the inner layer nearby the film/substrate interface, which could be attributed to the simultaneous diffusion of oxygen from film surface and the edge of film/substrate interface, respectively. The results of potentiodynamic polarization scan showed that the corrosion resistance of the oxidized ZrN-coated SS was excellent and increased by about 1000 times relative to that of bare 304SS. The corrosion area after 500-hr salt spray test was less than 6.7 % for the oxidized ZrN-coated SS, and the oxidized ZrN films deposited by UBMS had better durability in salt spray test. The fully oxidized ZrN thin film deposited by UBMS showed great corrosion resistance and remained intact on 304SS substrate after potentiodynamic polarization scan and 500-hr salt spray test, which was associated with the enhanced adhesion by the interdiffusion layer from heat treatment. The results indicated that ZrN thin films deposited by both UBMS and HCD-IP could be used for the growth of oxidized layer by vacuum annealing. Therefore, UBMS could replace HCD-IP to deposit ZrN thin films on 304SS to produce an oxidized ZrN layer with excellent corrosion resistance.
Content
致謝 i
摘要 iv
Abstract v
Content vi
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Coating Methods 3
2.1.1 Hollow Cathode Discharge Ion-Plating (HCD-IP) 3
2.1.2 Unbalanced Magnetron Sputtering (UBMS) 4
2.2 The Characteristics of ZrN and ZrO2 5
2.2.1 ZrN 5
2.2.2 ZrO2 7
2.3 Heat Treatment and the Oxidation Behavior of ZrN Thin Films 12
2.4 The Corrosion Resistance of ZrO2 Thin Film 14
Chapter 3 Experimental Details 17
3.1 Substrate Preparation and Coating Process 18
3.2 Vacuum Heat Treatment 23
3.3 Characterization Methods 24
3.3.1 X-ray Diffraction (XRD) 24
3.3.1.1 θ/2θ scan 24
3.3.1.2 Grazing Incident X-ray Diffraction (GIXRD) 24
3.3.2 Field Emission Scanning Electron Microscopy (FEG-SEM) 25
3.3.3 Atomic Force Microscopy (AFM) 26
3.3.4 X-ray Photoelectron Spectroscopy (XPS) 26
3.3.5 Auger Electron Spectroscopy (AES) 27
3.3.6 Dual-Beam Focused Ion Beam Microscopy (FIB) 28
3.4 Properties Measurements 28
3.4.1 Residual Stress 28
3.4.2 Hardness and Young’s Modulus 29
3.4.3 Coloration 29
3.4.4 Corrosion Resistance 31
3.4.4.1 Potentiodynamic Polarization Scan 31
3.4.4.2 Salt Spray Test 33
Chapter 4 Results 34
4.1 Structure 39
4.1.1 XRD and GIXRD 39
4.1.2 OM and SEM Observations 44
4.2 Compositions 51
4.2.1 XPS and AES 51
4.3 Properties 56
4.3.1 Hardness 56
4.3.2 Residual Stress 57
4.3.3 Corrosion Resistance 59
4.3.3.1 Potentiodynamic Polarization Scan 59
4.3.3.2 Salt Spray Test 66
Chapter 5 Discussion 68
5.1 The Comparison of Structure of the Oxidized ZrN Thin Films Deposited by HCD-IP and UBMS 68
5.2 The Oxidation Behavior of ZrN Thin Films Annealed in Vacuum 73
5.3 The Corrosion Resistance of Oxidized ZrN Coated Stainless Steel 80
5.4 The Adhesion of ZrO2 on 304SS Substrate 82
Chapter 6 Conclusions 88
References 89
Appendix A 95
Surface Morphology After 500 hr Salt Spray Test 95
Appendix B 98
The Cross-Sectional Morphology of Specimens 98
Appendix C 100
The Compositional Depth Profiles of the Oxidized ZrN 100
Appendix D 102
The Phase Identification of the Specimens Before and After Potentiodynamic Polarization Scan 102
Appendix E 104
Deconvolution XPS Spectra of the Specimens 104
Appendix F 115
Results of AFM 115
Appendix G 120
The Distribution of Surface Grain Size 120
References
[1] E. Ryshkewitz, D. W. Richardson, Oxide Ceramic: Physical Chemistry and Technology, Academic Press, 1985.
[2] S. Meriani, Zirconia'88, Advances in Zirconia Science and Technology, Elsevier Publishing Company, 1989.
[3] H. Li, K. Liang, L.Mei, S. Gu, S. Wang, "Oxidation protection of mild steel by zirconia sol-gel coatings", Mater. Lett., 51 (2001) 320.
[4] C. Piconi, G. Maccauro, "Zirconia as a ceramic biomaterial", Biomater, 20 (1999) 1-25.
[5] C. Piconi , G. Maccauro, L. Pilloni, W. Burger, F. Muratori, H. Richter, "On the fracture of a zirconia ball head", J. Mater. Sci., 17 (2006) 289.
[6] J. H. Huang, T. C. Lin, G. P. Yu, "Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel", Surf. Coat. Technol., 206 (2011) 107-116.
[7] J.W. Hsieh,“Growth of ZrO2 by Heat Treating ZrN Thin Film under Controlled Atmosphere”, 2012, Master Thesis, National Tsing Hua University, R.O.C.
[8] S.A. Chou, "The Oxidation Behavior and Corrosion Resistance of ZrN Thin Films Heat Treated in Vacuum", 2014, Master Thesis, National Tsing Hua University, R.O.C.
[9] R.A. Dugdale, “The application of the glow discharge to material processing”, J. Mater. Sci., 1(1966)169.
[10] W. Ensinger, A. Schröer, G.K. Wolf, "A comparison of IBAD-films for wear and corrosion protection with other PVD-coatings", Nucl. Instr. Meth. B. 80/81 (1993) 445-454.
[11] P.J. Kelly, R.D. Arnell, “Magnetron sputtering: a review of recent developments and applications”, Vac., 56 (2000) 159-172.
[12] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, "Improved Corrosion-Resistance of Physical Vapor-Deposition Coated TiN and ZrN", Surf. Coat. Technol., 41 (1990) 191.
[13] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, "Decorative hard coatings with improved corrosion resistance", Surf. Coat. Technol., 112 (1990) 108.
[14] L. Krusin-Elbaum, M. Wittmer, C. Y. Ting and J. J. Cuomo, "ZrN DIFFUSION BARRIER IN ALUMINUM METALLIZATION SCHEMES", Thin Solid Films, 104 (1983) 81.
[15] L. Krusin-elbaum, M. Wittmer, "OXIDATION KINETICS OF ZrN THIN FILMS", Thin Solid Films, 107 (1983) 111-117.
[16] JCPDS PDF#650961.
[17] J.E. Hove, W.C. Riley, Modern Ceramic: Some Principles and Concepts, John Wiley, 1965, pp.352.
[18] L.E. Toth, Transition Metal Carbides and Nitrudes, Academic press, 1971, pp.188.
[19] J.H. Huang, K.W. Lau, G.P. Yu, "Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering", Surf. Coat. Technol., 191 (2005) 17.
[20] E. Török, A.J. Perry, L. Chollet, W.D. Sproul, "Young's moludus of TiN, TiC, ZrN and HfN", Thin Solid Films, 153 (1987) 37.
[21] A.J. Perry, V. Valvoda, D. Rafaja, "X-ray residual stress measurement in TiN, ZrN and HfN films using the Seemann-Bohlin method", Thin Solid Films, 214 (1992) 169.
[22] A.J. Perry, "A contribution to the study of poisson's ratios and elastic constants of TiN, ZrN and HfN", Thin Solid Films, 193-194 (1990) 463.
[23] P. Jin, S. Maruno, "Evaluation of Internal Stress in Reactively Sputter-Deposited ZrN Thin Films", Jpn. J. Appl. Phys., 30 (1991) 1463.
[24] T.K. Yeh, Y.C. Chien, B.Y. Wang, C.H. Tsai, "Electrochemical characteristics of zirconium oxide treated Type 304 stainless steels of different surface oxide structures in high temperature water", Corros. Sci., 50 (2008) 2327.
[25] X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, "Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte", Mater. Sci. Eng., A, 335 (2002) 246.
[26] H.J. Cho, Y.D. Kim, D.S. Park, E.Lee, C.H. Park, J.S. Jang, K.B. Lee, H.W. Kim, Y.J. Ki, I.K. Han, Y.W. Song, "New TIT capacitor with ZrO2/Al2O3/ZrO2 dielectrics for 60nm and below DRAMs", Solid-State Electron., 51 (2007) 1529.
[27] W. Guan, S. Long, R. Jia, M. Liu, "Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide", Appl. Phys. Lett., 91 (2007) 062111.
[28] S.W. Nam, J.H. Yoo, H.Y. Kim, S.K. Kang, D.H. Ko, C.W. Yang, H.J. Lee, M.H. Cho, J.H. Ku, "Study of ZrO2 thin films for gate oxide applications", J. Vac. Sci. Technol. A, 19 (2001) 1720.
[29] A.H. Heuer, M. Ruhle, in: N. Claussen, M. Ruhle, A.H. Heuer (Eds.), Advances in ceramics, Science and Technology of Zirconia II, vol. 12, American Ceramic Society, Columbus, OH, 1984.
[30] J. Abriata, J Garcés, R. Versaci, "The O-Zr (Oxygen-Zirconium) system", J. Phase Equil., 7 (1986) 116.
[31] P. Li, I. -W. Chen, J.E. Penner-Han, "X-ray-absorption studies of zirconia polymorphs: I. Characteristic structures", Phys. Rev. B, 48 (1993) 10063-10073.
[32] E.C. Subbarao, "Zirconia- an overview", Adv. Ceram., 3 (1981) 1-24.
[33] K. Tanabe, T. Yamaguchi, "Acid-base bifunctional catalysis by ZrO2 and its mixed oxides", Catal. Today, 20 (1994) 185-197.
[34] D.R. Clarke, C.G. Levi, "MATERIALS DESIGN FOR THE NEXT GENERATION THERMAL BARRIER COATINGS", Annu. Rev. Mater. Res., 33 (2003) 383-417.
[35] R.C. Garvie, "The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect", J. Phys. Chem., 69 (1965) 1238-1243.
[36] T. Chraska, A.H. King, C.C. Berndt, "On the size-dependent phase transformation in nanoparticulate zirconia", Mater. Sci. Eng., A 286 (2000) 169-178.
[37] R. Nitsche, M. Rodewald, G. Skandan, H. Fuess, H. Hahn, "HRTEM STUDY OF NANOCRYSTALLINE ZIRCONIA POWDERS ", Nanostruct. Mater., 7 (1996) 535-546.
[38] Y. Kanno, "Stability of metastable tetragonal ZrO2 in compound powders and nucleation arguments", J. Mater. Sci., 25 (1990) 1987-1990.
[39] S. Shukla, S. Seal, "Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia", Int. Mater. Rev., 50 (2005) NO1.
[40] T. Mitsuhashi, M. Ichihara U. Tatsuke, "Characterization and stabilization of metastable tetragonal ZrO2", J. Am. Ceram. Soc., 52 (1974) 97-101.
[41] P.Li, I-W. Chen, J. E. Penner-Hahn, "Effect of Dopants on Zirconia Stabilization- An X-ray Absorption Study: Trivalent Dopants", J. Am. Ceram. Soc., 77 (1994) 118-128.
[42] N. Igawa, Y. Ishii, "Crystal Structure of Metastable Tetragonal Zirconia up to 1473 K", J. Am. Ceram. Soc., 84 (2001) 1169-1171.
[43] D.E. Collins, K.J. Bowman, "Influence of atmosphere on crystallization of zirconia from a zirconium alkoxide", J. Mater. Res., 13 (1998) 1230-1237.
[44] Y.-B. Cheng, D.P. Thompson, "ROLE OF ANION VACANCIES IN NITROGEN-STABILIZED ZIRCONIA", J. Am. Ceram. Soc., 76 (1993) 683-688.
[45] M. Lerch, J. Wrba, J. Lerch, "Vacancy Ordering in the ZrO2Rich Part of the Systems Ca-Zr-O-N, Mg-Zr-O-N, and Y-Zr-O-N", J. Solid State Chem., 125 (1996) 153-158.
[46] M.I. Osendi, J.S. Moya, C.J. Serna, J. Soria, "Metastability of Tetragonal Zirconia Powders", J. Am. Ceram. Soc., 68 (1985) 135-139.
[47] R. Gómez, T. López, "Dehydroxylation and Crystalline Phases in Sol-Gel Zirconia", J. Sol-Gel Sci. Technol., 11 (1998) 309-319.
[48] JCPDS PDF#830944.
[49] JCPDS PDF#897710.
[50] JCPDS PDF#491642.
[51] W.A. Roth, G. Becker, "Thermochemical revisions", Z. Physik. Chem., A, 145 (1929) 461-469.
[52] O. Ruff, F. Ebert, "Refractory Ceramics: 1, The Forms of Zirconia Dioxide", Z. Anorg. Allgem. Chem., 180 (1929) 19-41.
[53] L. Passerini, "Isomorphism among oxides of different tetravalent metals: CeO2-ThO2; CeO2-ZrO2; CeO2-HfO2", Gazz. Chim. Ital., 60 (1930) 762.
[54] F.C. Nonamaker, " Technology of Zirconium and Its Compounds", Chem. Met. Eng., 31 (1924) 151-155.
[55] K. Maca, H. Hadraba, J. Cihlar, "Electrophoretic deposition of alumina and zirconia: I. Single-component systems", Ceram. Int., 30 (2004) 843.
[56] B. Hatton, P.S. Nicholson, "Design and Fracture of Layered Al2O3/TZ3Y Composites Produced by Electrophoretic Deposition", J. Am. Ceram. Soc., 84 (2001) 571-576.
[57] J.F. Shackelford, CRC Materials Science and Engineering Handbook, 2nd ed., CRC Press, 1994.
[58] Oswald Kubaschewski, C.B. Alcock, Zirconium: Physico-chemical Properties of Its Compounds and Alloys, International Atomic Energy Agency, 1976.
[59] A. Hidaka, J. Nakamura, J. Sugimoto, "Influence of thermal properties of zirconia shroud on analysis of PHEBUS FP10 bundle degradation test with ICARE2 code", Nucl. Eng. Des., 168 (1997) 361.
[60] F. Cernushi, S. Ahmaniemi, P. Vuoristo, T. Mäntylä, "Modelling of thermal cinductivity of porous materials: application to thick thermal barrier coatings", J. Eur. Ceram. Soc., 24 (2004) 2657.
[61] S. Venkataraj, O. Kappertz, H. Weis, R. Jayavel, M. Wutting, "Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering", J. Appl. Phys., 92 (2002) 3599.
[62] Z.W. Zhao, B.K. Tay, G.Q. Yu, S.P. Lau, "Optical properties of filtered cathodic vacuum arc-deposited zirconium oxide thin films", J. Phys.: Condens. Matter, 15 (2003) 7707.
[63] X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, "Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte", Mater. Sci. Eng., 335 (2002) 246.
[64] B. Kra´lik, E. K. Chang, S. G. Louie "Structural properties and quasiparticle band structure of zirconia", Phys. Rev. B, 57 (1998) 7027-7036.
[65] C.S. Hwang, H.J. Kim, "Deposition and characterization of ZrO2 thin films on silicon substrate by MOCVD", J. Mater. Res., 8 (1993) 1361.
[66] J. H. Huang, K.J. Yu, P. Sit, G.P. Yu, "Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering", Surf. Coat. Technol., 200 (2006) 4291.
[67] H.M. Tung, J.H. Huang, D.G. Tsai, C.F. Ai, G.P. Yu, "Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment", Mater. Sci. Eng., A 500 (2009) 104-108.
[68] L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, P. Goudeau, J.P. Rivière, "Structural evolution in ZrNxOy thin films as a function of temperature", Surf. Coat. Technol., 200 (2006) 2917.
[69] J.H. Huang, T.H. Wu, G.P. Yu, "Heat treatment induced phase separation and phase transformation of ZrNxOy thin films deposited by ion plating", Surf. Coat. Technol., 203 (2009) 3491-3500.
[70] M. Ürgen, A.F. Çaklr, "The effect of heating on corrosion behavior of TiN- and CrN-coated steels", Surf. Coat. Technol., 96 (1997) 236-244.
[71] H.N. Al- Shareef, X. Chen, D.J. Lichtenwalner, A.I. Kingon, "Analysis of the oxidation kinetics and barrier layer properties of ZrN and Pt/Ru thin films for DRAM applications", Thin Solid Films, 280 (1996) 265-270.
[72] P. Panjan, B. Navinšek, A. Cvelbar, A. Zalar, I. Milošev, "Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature", Thin Solid Films, 281-282 (1996) 298.
[73] I. Milošev, H.H. Strehblow, B. Navinšek, "Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation", Thin Solid Films, 303 (1997) 246.
[74] F.H. Lu, W.Z. Lo, "Degradation of ZrN films at high temperature under controlled atmosphere", J. Vac. Sci. Technol. A, 22 (2004) 2071.
[75] Y.C. Chieh, W.Z. Lo, F.H. Lu, "Microstructure evolution of ZrN films annealed in vacuum", Surf. Coat. Technol., 200 (2006) 3336.
[76] J.S. Jeng, S.H. Wang, J.S. Chen, "Effects of substrate bias and nitrogen flow ratio on the resistivity and crystal structure of reactively sputtered ZrNx films at elevated temperature", J. Vac. Sci. Technol. A, 25 (2007) 651.
[77] G. Reddy , J. Ramana, S. Kumar, V. Raju, "Investigations on oxidation of zirconium nitride films in air by nuclear reaction analysis and backscattering spectrometry", Appl. Surf. Sci., 253 (2007) 7230.
[78] J.S. Jeng, J.S. Chen, "Effects of substrate bias and nitrogen flow ratio on the surface morphology and binding state of reactively sputtered ZrNx films before and after annealing", Appl. Surf. Sci., 255 (2009) 8263.
[79] Y.Y. Cheng,“Growth of TiN and ZrO2 Thin Films Using Thin Film Templates”, 2008, Master Thesis, National Tsing Hua University, R.O.C.
[80] Y.A. Chao,“Oxidation Behavior of ZrN Thin Films in Vacuum and Nitrogen Environments”, 2010, Master Thesis, National Tsing Hua University, R.O.C.
[81] Z.B. Qi, Z.T. Wu, H.F. Liang, D.F. Zhang, J.H. Wang, Z.C. Wang, "In situ and ex situ studies of microstructure evolution during high-temperature oxidation of ZrN hard coating", Scr. Mater., 97 (2015) 9-12.
[82] W.D. Kingery, Introduction to Cemaric, Wiley, New York, 1960.
[83] H. H. Uhlig, R.W. Revie , Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 4th ed., John Wiley & Sons, Inc., Canada, 2008, Chapter 7
[84] D. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice-Hall, Inc., New Jersy, 1996.
[85] T.K. Yeh, C.T. Liu, C.H. Tsai, "The Influence of ZrO2 Treatment on the Electrochemical Behavior of Oxygen and Hydrogn on Type 304 Stainless Steels in High Temperature Water", J. Nucl. Sci. Technol., 42 (2005) 809-815.
[86] T.K. Yeh, P-I. Wu, C.H. Tsai, "Corrosion of ZrO2 treated type 304 stainless steels in high temperature pure water with various amounts of hydrogen peroxide", Prog. Nucl. Energy, 57 (2012) 62-70.
[87] K. Sayama, H. Arakawa, "Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon Dioxide over ZrO2 catalyst", J. Phys. Chem., 97 (1993) 531-533.
[88] S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1984.
[89] Y. J. Kim, P. L. Andresen, "Protective insulated coating for SCC mitigation in BWRs", 15th International Conference on Environmental Degradation, 2011, TMS, USA.
[90] C.Y. Li, "Influence of Ultraviolet Radiation on the Corrosion Behavior of ZrO2-treated Type 304 Stainless Steels in High Temperature Pure Water", 2013, Master Thesis, National Tsing Hua University, R.O.C.
[91] R.L. Cowan, "The mitigation of IGSCC of BWR internals with hydrogen water chemistry", 7th International Conference on Water Chemistry of Nuclear Reactor Systems, Bournemouth, England, Oct. 13-17, 1996.
[92] A. Fujishima, K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 238 (1972) 37-38.
[93] P. Scherrer, "Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen", Gött. Nachr., 2 (1918) 98.
[94] L.V. Azaroff, M.J. Buerger, The power method in X-ray crystallography McGraw-Hill 1958, pp. 233.
[95] D.A. Shirley, "High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold", Phys. Rev. B 5 (1972) 4709.
[96] J. Chastain, J.F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corp, 1992.
[97] M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, "X-ray photoelectron spectroscopy analysis of zirconium nitride-like films prepared on Si(100) substrates by ion beam assisted deposition", Surf. Coat. Technol., 202 (2008) 3129.
[98] I. Milošev, H.H. Strehblow, M. Gaberšcek, B. Navinšek, "ELECTROCHEMICAL OXIDATION OF ZRN HARD (PVD) COATINGS STUDIED BY XPS", Surf. Coat. Technol., 24 (1996) 448.
[99] M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclère, G. Terwagne, M. Hecq, "Study of ZrN layers deposited by reactive magnetron sputtering", Surf. Coat. Technol., 174-175 (2003) 240-245.
[100] C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, "AN XPS STUDY OF THE INTERACTION OF OXYGEN WITH ZIRCONIUM", Surf. Sci., 218 (1989) 331-345.
[101] C. H. Ma , J. H. Huang, H. Chen, "Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction", Thin Solid Films, 418 (2002) 73.
[102] W. C. Oliver, G.M. Pharr, "An inproved technique for determining hardness and elestic modulus using load and displacement sensing indentation experiments ". J. Mater. Res., 7 (1992) 1564.
[103] CIE, Colorimetry, Tech. Rept., 15, Bureau Central de la CIE, Paris, 1971, pp.1.
[104] CIE, Recommendations on uniform color spaces, color difference equation and psychometric terms, Supplement No.2 to CIE publication No.15, Tech. Rept., Bureau Central dela CIE, Paris, 1978, pp.1.
[105] ASTM, Symposium on Color, American Society for Testing Materials, Philadelphia, 1941, pp.3.
[106] ASM, Metal Handbook, Vol. 13, 9th ed., ASM International, Materials Park, 1988, pp.212.
[107] ASTM, Section 3 (1996) B117, pp. 4 and G85, pp. 350
[108] K. Gurushantha, K.S. Anantharaju, H. Nagabhushanab, S.C. Sharmac, Y.S. Vidya, C. Shivakumara, H.P. Nagaswarupa, S.C. Prashantha, M.R. Anilkumar, "Facile green fabrication of iron-doped cubic ZrO2nanoparticles by Phyllanthus acidus: Structural, photocatalytic and photoluminescentproperties", J. Mol. Catal. A Chem., 397 (2015) 36-47.
[109] K. Alireza, R.D.C. Soltani, Y. Hanifehpor, M. Safarpour, H.G. Ranjbar, S.W. Joo, "Synthesis and Characterization of Dysprosium-Doped ZnO Nanoparticles for Photocatalysis of a Textile Dye under Visible Light Irradiation", Ind. Eng. Chem. Res., 53 (2014) 1924-1932.
[110] C.C. Cheng, A. Erdemir, G.R. Fenske, "Correlation of Interface Structure with Adhesive Strength of Ion-Plated TiN Hard Coatings", Surf. Coat. Technol., 39/40 (1989) 365-376.
[111] U. Helmersson, B.O. Johansson, J.-E. Sundgren, H.T.G. Hentzell, P. Billgren, "Adhesion of titanium nitride coatings on high-speed steels", J. Vac. Sci. Technol. A, 3 (1985) 308-315
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *