帳號:guest(13.58.12.203)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳韋捷
作者(外文):Chen, Wei Jie
論文名稱(中文):合成石墨化奈米碳纖維及三維石墨烯複合結構應用於超級電容之研究
論文名稱(外文):The synthesis of graphitic nanofibers/three dimensional graphene as a hybrid nanostructure for supercapacitors
指導教授(中文):蔡春鴻
葉宗洸
指導教授(外文):Tsai, Chuen Horng
Yeh, Tsung Kuang
口試委員(中文):蔡春鴻
葉宗洸
戴念華
謝建國
口試委員(外文):Tsai, Chuen Horng
Yeh, Tsung Kuang
Tai, Nyan Hwa
Hsieh, Chien Kuo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011507
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:60
中文關鍵詞:石墨化奈米碳纖維三維石墨烯超級電容
外文關鍵詞:graphitic nanofibersthree dimensional graphenesupercapacitor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:97
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近幾十年來,劇烈的氣候變化及有限的化石燃料儲量,使得再生能源以及儲能系統受到很大的關注。再生能源如:風能和太陽能,是地球上相較之下較容易獲得的能源,但由於其間歇性的緣故,使如何更有效率的儲存能量變得更為重要。而在眾多的儲能元件中,超級電容具有高功率密度、快速充放電的能力、高循環壽命等之優點,無論在混合動力汽車、電動車、通訊、記憶體等方面皆有很大的應用價值及潛力。本研究是利用熱化學氣相沉積法在高多孔性之泡沫鎳基板上合成石墨化奈米碳纖維及三維石墨烯之複合結構,並將其應用於超級電容之電極上。本研究之複合結構具有高孔隙及高比表面積,以6 M KOH做為電解液進行電化學量測,在電流密度1 A g-1 下可以得到優異之電容值達59.28 F g-1,藉由長效性的充放電測試,經過了1000個循環,電容值仍然可以維持於90.66 %,表示了此材料優異的長效循環壽命。這些結果顯示了此石墨化奈米碳纖維及三維石墨烯之複合結構具有極佳之潛力成為超級電容之電極,對於儲能元件上之應用有極大的幫助。
In recent decades, the climate change and the limited reserves of fossil fuels, and energy security concerns, have promoted internationally interest in developing renewable energy technologies from renewable and endurable energy resources. In fact, there is a speedy increase in renewable energy productions from wind and solar energy, the most bountiful and easily available resources. Given the intermittent nature of solar and wind energy, efficient energy storage systems are urgently required to make the best of the electricity generated from these sources since they can boost the effective and reliability use of the entire power system by storing energy when in excess while releasing it when in high demand. For this purpose, supercapacitors have been promising candidates for the energy storage requirement. In this study, we reported the synthesis of graphitic nanofibers/three dimensional graphene (GNFs/3D graphene) hybrid nanostructure on highly porous nickel foam via thermal chemical vapor deposition (CVD) process. This hybrid nanostructure demonstrated to possess a large surface area and showed an excellent specific capacitance of 59.28 F g-1 at a current density of 1 A g-1, good cycle stability with capacitance retention of 90.66 % after 1000 cycles in 6 M KOH electrolyte. These results suggested that this hybrid nanostructure is a promising candidate which provides a simple and effective technique to prepare electrodes for supercapacitor.
Table of Content
Abstract i
摘要 ii
致謝 iii
Table of Content v
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
Chapter 2 Literature Reviews 5
2-1 Basic of supercapacitor 5
2-2 The principle of supercacitor 7
2-2-1 The energy storage mechanism of EDLCs 7
2-2-2 The energy storage mechanism of pseudocapacitors 9
2-3 Basic of carbon nanomaterials 10
2-3-1 The synthesis of carbon nanomaterials 12
2-3-2 Applicaton of carbon nanomaterials for supercapacitor 17
2-3-3 Three dimentional carbon nanomaterials 19
Chapter 3 Experimental details 21
3-1 Fabrication of 3D graphene foams 22
3-2 Synthesize of Nickel nanoparticles on 3D GFs 24
3-3 Synthesize of graphitic nanofibers on 3D GFs 25
3-4 Electrochemical measurements 26
3-5 Characterization and Instruments 28
3-5-1 Thermal CVD system 28
3-5-2 ECD and electrochemical analysis system 29
3-5-3 Raman spectroscopy 30
3-5-4 Field emission scanning electron microscope (FESEM) 31
3-5-5 High-resolution transmission electron microscopy (HRTEM) 32
Chapter 4 Results and discussions 33
4-1 Physical characterization 33
4-1-1 Surface morphology 33
4-1-2 Raman characterization analysis 37
4-2 Electrochemical characterization 39
4-2-1 Cyclic voltammetry 39
4-2-2 Galvanostatic charge-discharge 40
4-2-3 Electrochemical impedance spectra 42
Chapter 5 Conclusions 44
References 45
[1] J. P. Holdren, "Energy and sustainability," Science, vol. 315, pp. 737-737, Feb 9 2007.
[2] B. E. Conway, Electrochemical supercapacitors : scientific fundamentals and technological applications. New York: Plenum Press, 1999.
[3] J. S. Huang, B. G. Sumpter, and V. Meunier, "Theoretical model for nanoporous carbon supercapacitors," Angewandte Chemie-International Edition, vol. 47, pp. 520-524, 2008.
[4] M. Q. Zhao, X. F. Liu, Q. Zhang, G. L. Tian, J. Q. Huang, W. C. Zhu, and F. Wei, "Graphene/Single-Walled Carbon Nanotube Hybrids: One-Step Catalytic Growth and Applications for High-Rate Li-S Batteries," ACS Nano, vol. 6, pp. 10759-10769, Dec 2012.
[5] Z. Y. Yang, Y. F. Zhao, Q. Q. Xiao, Y. X. Zhang, L. Jing, Y. M. Yan, and K. N. Sun, "Controllable Growth of CNTs on Graphene as High-Performance Electrode Material for Supercapacitors," ACS Applied Materials & Interfaces, vol. 6, pp. 8497-8504, Jun 11 2014.
[6] P. Sharma, V. Bhalla, V. Dravid, G. Shekhawat, Jinsong-Wu, E. S. Prasad, and C. R. Suri, "Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes," Scientific Reports, vol. 2, Nov 19 2012.
[7] R. Kotz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, vol. 45, pp. 2483-2498, 2000.
[8] M. Winter and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?," Chemical Reviews, vol. 104, pp. 4245-4269, Oct 2004.
[9] A. Burke, "Ultracapacitors: why, how, and where is the technology," Journal of Power Sources, vol. 91, pp. 37-50, Nov 2000.
[10] J. R. Miller and P. Simon, "Materials science - Electrochemical capacitors for energy management," Science, vol. 321, pp. 651-652, Aug 1 2008.
[11] D. L. Chapman, "A Contribution to the Theory of Electrocapillarity," Philosophical Magazine, vol. 25, pp. 475-481, Apr 1913.
[12] G. H. Yu, X. Xie, L. J. Pan, Z. N. Bao, and Y. Cui, "Hybrid nanostructured materials for high-performance electrochemical capacitors," Nano Energy, vol. 2, pp. 213-234, Mar 2013.
[13] A. R. Oganov, R. J. Hemley, R. M. Hazen, and A. P. Jones, "Structure, Bonding, and Mineralogy of Carbon at Extreme Conditions," Carbon in Earth, vol. 75, pp. 47-77, 2013.
[14] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, "C-60 - Buckminsterfullerene," Nature, vol. 318, pp. 162-163, 1985.
[15] S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature, vol. 354, pp. 56-58, Nov 7 1991.
[16] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, Oct 22 2004.
[17] T. W. Ebbesen and P. M. Ajayan, "Large-Scale Synthesis of Carbon Nanotubes," Nature, vol. 358, pp. 220-222, Jul 16 1992.
[18] W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
[19] S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nature Nanotechnology, vol. 4, pp. 217-224, Apr 2009.
[20] H. Tempel, R. Joshi, and J. J. Schneider, "Ink jet printing of ferritin as method for selective catalyst patterning and growth of multiwalled carbon nanotubes," Materials Chemistry and Physics, vol. 121, pp. 178-183, May 15 2010.
[21] R. Smajda, J. C. Andresen, M. Duchamp, R. Meunier, S. Casimirius, K. Hernadi, L. Forro, and A. Magrez, "Synthesis and mechanical properties of carbon nanotubes produced by the water assisted CVD process," Physica Status Solidi B-Basic Solid State Physics, vol. 246, pp. 2457-2460, Dec 2009.
[22] S. P. Patole, P. S. Alegaonkar, H. C. Lee, and J. B. Yoo, "Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes," Carbon, vol. 46, pp. 1987-1993, Nov 2008.
[23] H. D. Kim, J. H. Lee, and W. S. Choi, "Direct Growth of Carbon Nanotubes with a Catalyst of Nickel Nanoparticle-coated Alumina Powders," Journal of the Korean Physical Society, vol. 58, pp. 112-115, Jan 2011.
[24] B. Brown, C. B. Parker, B. R. Stoner, and J. T. Glass, "Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst," Carbon, vol. 49, pp. 266-274, Jan 2011.
[25] D. Varshney, B. R. Weiner, and G. Morell, "Growth and field emission study of a monolithic carbon nanotube/diamond composite," Carbon, vol. 48, pp. 3353-3358, Oct 2010.
[26] H. R. Byon, H. Lim, H. J. Song, and H. C. Choi, "A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process," Bulletin of the Korean Chemical Society, vol. 28, pp. 2056-2060, Nov 20 2007.
[27] Y. Xu, E. Dervishi, A. R. Biris, and A. S. Biris, "Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst," Materials Letters, vol. 65, pp. 1878-1881, Jun 30 2011.
[28] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, and R. Kizek, "Methods for carbon nanotubes synthesis-review," Journal of Materials Chemistry, vol. 21, pp. 15872-15884, 2011.
[29] M. K. Kumar and S. Ramaprabhu, "Palladium dispersed multiwalled carbon nanotube based hydrogen sensor for fuel cell applications," International Journal of Hydrogen Energy, vol. 32, pp. 2518-2526, Sep 2007.
[30] A. G. Pandolfo and A. F. Hollenkamp, "Carbon properties and their role in supercapacitors," Journal of Power Sources, vol. 157, pp. 11-27, Jun 19 2006.
[31] H. S. Teng, Y. J. Chang, and C. T. Hsieh, "Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching," Carbon, vol. 39, pp. 1981-1987, 2001.
[32] T. C. Weng and H. S. Teng, "Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors," Journal of the Electrochemical Society, vol. 148, pp. A368-A373, Apr 2001.
[33] A. B. Fuertes, F. Pico, and J. M. Rojo, "Influence of pore structure on electric double-layer capacitance of template mesoporous carbons," Journal of Power Sources, vol. 133, pp. 329-336, Jun 4 2004.
[34] A. B. Fuertes, G. Lota, T. A. Centeno, and E. Frackowiak, "Templated mesoporous carbons for supercapacitor application," Electrochimica Acta, vol. 50, pp. 2799-2805, May 5 2005.
[35] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, A. Reda, J. Parmentier, J. Patarin, and F. Beguin, "Capacitance properties of ordered porous carbon materials prepared by a templating procedure," Journal of Physics and Chemistry of Solids, vol. 65, pp. 287-293, Feb-Mar 2004.
[36] J. Chmiola, C. Largeot, P. L. Taberna, P. Simon, and Y. Gogotsi, "Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors," Science, vol. 328, pp. 480-483, Apr 23 2010.
[37] J. Chmiola, G. Yushin, R. Dash, and Y. Gogotsi, "Effect of pore size and surface area of carbide derived carbons on specific capacitance," Journal of Power Sources, vol. 158, pp. 765-772, Jul 14 2006.
[38] Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, and G. Yushin, "High-Rate Electrochemical Capacitors Based on Ordered Mesoporous Silicon Carbide-Derived Carbon," ACS Nano, vol. 4, pp. 1337-1344, Mar 2010.
[39] E. Raymundo-Pinero, F. Leroux, and F. Beguin, "A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer," Advanced Materials, vol. 18, pp. 1877-1882, Jul 18 2006.
[40] K. Jost, C. R. Perez, J. K. McDonough, V. Presser, M. Heon, G. Dion, and Y. Gogotsi, "Carbon coated textiles for flexible energy storage," Energy & Environmental Science, vol. 4, pp. 5060-5067, Dec 2011.
[41] C. Kim and K. S. Yang, "Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning," Applied Physics Letters, vol. 83, pp. 1216-1218, Aug 11 2003.
[42] E. J. Ra, E. Raymundo-Pinero, Y. H. Lee, and F. Beguin, "High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper," Carbon, vol. 47, pp. 2984-2992, Nov 2009.
[43] L. F. Chen, X. D. Zhang, H. W. Liang, M. G. Kong, Q. F. Guan, P. Chen, Z. Y. Wu, and S. H. Yu, "Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors," ACS Nano, vol. 6, pp. 7092-7102, Aug 2012.
[44] J. M. Miller, B. Dunn, T. D. Tran, and R. W. Pekala, "Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes," Journal of the Electrochemical Society, vol. 144, pp. L309-L311, Dec 1997.
[45] E. Frackowiak and F. Beguin, "Carbon materials for the electrochemical storage of energy in capacitors," Carbon, vol. 39, pp. 937-950, 2001.
[46] C. M. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, "High power electrochemical capacitors based on carbon nanotube electrodes," Applied Physics Letters, vol. 70, pp. 1480-1482, Mar 17 1997.
[47] T. Bordjiba, M. Mohamedi, and L. H. Dao, "New class of carbon-nanotube aerogel electrodes for electrochemical power sources," Advanced Materials, vol. 20, pp. 815-819, Feb 18 2008.
[48] E. Frackowiak, K. Jurewicz, S. Delpeux, and F. Beguin, "Nanotubular materials for supercapacitors," Journal of Power Sources, vol. 97-98, pp. 822-825, Jul 2001.
[49] C. G. Liu, Z. N. Yu, D. Neff, A. Zhamu, and B. Z. Jang, "Graphene-Based Supercapacitor with an Ultrahigh Energy Density," Nano Letters, vol. 10, pp. 4863-4868, Dec 2010.
[50] L. L. Zhang, R. Zhou, and X. S. Zhao, "Graphene-based materials as supercapacitor electrodes," Journal of Materials Chemistry, vol. 20, pp. 5983-5992, 2010.
[51] J. J. Yoo, K. Balakrishnan, J. S. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai, and P. M. Ajayan, "Ultrathin Planar Graphene Supercapacitors," Nano Letters, vol. 11, pp. 1423-1427, Apr 2011.
[52] K. Zhang, L. L. Zhang, X. S. Zhao, and J. S. Wu, "Graphene/Polyaniline Nanoriber Composites as Supercapacitor Electrodes," Chemistry of Materials, vol. 22, pp. 1392-1401, Feb 23 2010.
[53] H. L. Wang, H. S. Casalongue, Y. Y. Liang, and H. J. Dai, "Ni(OH)(2) Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials," Journal of the American Chemical Society, vol. 132, pp. 7472-7477, Jun 2 2010.
[54] Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, and G. Q. Shi, "Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films," ACS Nano, vol. 4, pp. 1963-1970, Apr 2010.
[55] M. Inagaki, H. Konno, and O. Tanaike, "Carbon materials for electrochemical capacitors," Journal of Power Sources, vol. 195, pp. 7880-7903, Dec 15 2010.
[56] X. H. Cao, Y. M. Shi, W. H. Shi, G. Lu, X. Huang, Q. Y. Yan, Q. C. Zhang, and H. Zhang, "Preparation of Novel 3D Graphene Networks for Supercapacitor Applications," Small, vol. 7, pp. 3163-3168, Nov 18 2011.
[57] Y. M. He, W. J. Chen, X. D. Li, Z. X. Zhang, J. C. Fu, C. H. Zhao, and E. Q. Xie, "Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultra light and Flexible Supercapacitor Electrodes," ACS Nano, vol. 7, pp. 174-182, Jan 2013.
[58] W. Wang, S. R. Guo, M. Penchev, I. Ruiz, K. N. Bozhilov, D. Yan, M. Ozkan, and C. S. Ozkan, "Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors," Nano Energy, vol. 2, pp. 294-303, Mar 2013.
[59] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature Materials, vol. 7, pp. 845-854, Nov 2008.
[60] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, Nov 3 2006.
[61] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, "Spatially resolved raman spectroscopy of single- and few-layer graphene," Nano Letters, vol. 7, pp. 238-242, Feb 2007.
[62] S. L. Jiang, T. L. Shi, Y. Gao, H. Long, S. Xi, and Z. R. Tang, "Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors," Journal of Micromechanics and Microengineering, vol. 24, Apr 2014.
[63] W. Chen, Z. L. Fan, G. F. Zeng, and Z. P. Lai, "Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam," Journal of Power Sources, vol. 225, pp. 251-256, Mar 1 2013.
[64] M. D. Stoller and R. S. Ruoff, "Best practice methods for determining an electrode material's performance for ultracapacitors," Energy & Environmental Science, vol. 3, pp. 1294-1301, Sep 2010.
[65] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, Feb 5 2009.
[66] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, "Graphene-Based Ultracapacitors," Nano Letters, vol. 8, pp. 3498-3502, Oct 2008.
[67] N. Mahmood, C. Z. Zhang, H. Yin, and Y. L. Hou, "Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells," Journal of Materials Chemistry A, vol. 2, pp. 15-32, 2014.
(此全文未開放授權)
電子全文檔
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *