|
[1] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of thin films: a critical review, Surf. Coat. Techol., 198 (2005) 74-84. [2] S. Zhang, X. Zhang, Toughness evaluation of hard coatings and thin films, Thin Solid Films, 520 (2012) 2375-2389. [3] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Techol., 239 (2014) 20-27. [4] J.-H. Huang, Y.-H. Chen, A.-N. Wang, G.-P. Yu, H. Chen, Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Techol., 258 (2014) 211-218. [5] Y.-F. Chen, Effect of Composition on the Fracture Toughness of Ti1-xZrxN Hard Coatings, Master Thesis, National Tsing Hua University, Taiwan, (R.O.C.), 2014. [6] J.-H. Huang, Y.-Y. Hu, G.-P. Yu, Structure evolution and mechanical properties of ZrNxOy thin film deposited on Si by magnetron sputtering, Surf. Coat. Techol., 205 (2011) 5093-5102. [7] J.-H. Huang, T.-C. Lin, G.-P. Yu, Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel, Surf. Coat. Techol., 206 (2011) 107-116. [8] P. Panjan, B. Navinšek, A. Žabkar, V. Marinković, D. Mandrino, J. Fišer, Structural analysis of ZrN and TiN films prepared by reactive plasma beam deposition, Thin Solid Films, 228 (1993) 233-237. [9] P. Johnson, H. Randhawa, Zirconium nitride films prepared by cathodic arc plasma deposition process, Surf. Coat. Techol., 33 (1987) 53-62. [10] E. Kelesoglu, C. Mitterer, M. Kazmanli, M. Ürgen, Microstructure and properties of nitride and diboride hard coatings deposited under intense mild-energy ion bombardment, Surf. Coat. Techol., 116 (1999) 133-140. [11] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Techol., 41 (1990) 191-204. [12] L. Van Leaven, M. Alias, R. Brown, Corrosion behavior of ion plated and implated films, Surf. Coat. Techol., 53 (1992) 25-34. [13] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Material properties of ZrN film on silicon prepared by low-energy ion-assisted deposition, Surf. Coat. Techol., 66 (1994) 318-322. [14] L. Toth, Transition metal carbides and nitrides, Elsevier, 2014. [15] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surf. Coat. Techol., 112 (1999) 108-113. [16] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si(100), Thin Solid Films, 405 (2002) 162-169. [17] Z. Wokulski, Mechanical properties of TiN whiskers, Phys. Status Solidi A, 120 (1990) 175-184. [18] J. Gilles, Preparation Par Reaction a Letat Solide Et Structures Des Oxynitrures De Zirconium, Bull. Soc. Chim. Fr., (1962) 2118-&. [19] R. Collongues, J. Gilles, A. Lejus, M. Perez, D. Michel, Recherches sur les oxynitrures metalliques, Mater. Res. Bull., 2 (1967) 837-848. [20] Y. Cheng, D.P. Thompson, Nitrogen‐Containing Tetragonal Zirconia, J. Am. Ceram. Soc., 74 (1991) 1135-1138. [21] Y.B. Cheng, D.P. Thompson, Role of Anion Vacancies in Nitrogen‐Stabilized Zirconia, J. Am. Ceram. Soc., 76 (1993) 683-688. [22] M. Lerch, E. Füglein, J. Wrba, Synthesis, crystal structure, and high temperature behavior of Zr3N4, Z. Anorg., Allg. Chem., 622 (1996) 367-372. [23] W.H. Baur, M. Lerch, On deciding between space groups Pnam and Pna21 for the crystal structure of Zr3N4, Z. Anorg., Allg. Chem., 622 (1996) 1729-1730. [24] M. Lerch, Nitridation of zirconia, J. Am. Ceram. Soc., 79 (1996) 2641-2644. [25] M. Lerch, F. Krumeich, R. Hock, Diffusion controlled formation of β type phases in the system ZrO2-Zr3N4, Solid State Ionics, 95 (1997) 87-93. [26] M. Lerch, O. Rahauser, Subsolidus phase relationships in the ZrO2-rich part of the ZrO2–Zr3N4 system, J. Mater. Sci., 32 (1997) 1357-1363. [27] M. Lerch, Phase relationships in the ZrO2-Zr3N4 system, J. Mater. Sci. Lett., 17 (1998) 441-443. [28] A.T. Tham, C. Rödel, M. Lerch, D. Wang, D.S. Su, A. Klein‐Hoffmann, R. Schlögl, Electron microscopy investigations on structures of ZrO2‐rich phases in the quasibinary system ZrO2‐Zr3N4, Cryst. Res. Technol., 39 (2004) 421-428. [29] M.A. Signore, A. Rizzo, L. Tapfer, E. Piscopiello, L. Capodieci, A. Cappello, Effect of the substrate temperature on zirconium oxynitride thin films deposited by water vapour–nitrogen radiofrequency magnetron sputtering, Thin Solid Films, 518 (2010) 1943-1946. [30] A. Rizzo, M.A. Signore, L. Mirenghi, A. Cappello, L. Tapfer, Nano-crystalline Zr2ON2 thin films deposited by reactive magnetron sputtering, Surf. Coat. Techol., 204 (2010) 2019-2022. [31] A. Rizzo, M.A. Signore, L. Mirenghi, L. Tapfer, E. Piscopiello, E. Salernitano, R. Giorgi, Sputtering deposition and characterization of zirconium nitride and oxynitride films, Thin Solid Films, 520 (2012) 3532-3538. [32] P. Carvalho, J.M. Chappé, L. Cunha, S. Lanceros-Méndez, P. Alpuim, F. Vaz, E. Alves, C. Rousselot, J.P. Espinós, A.R. González-Elipe, Influence of the chemical and electronic structure on the electrical behavior of zirconium oxynitride films, J. Appl. Phys., 103 (2008) -. [33] JCPDS file 35-0753 [34] J.E. Hove, W.C. Riley, Modern ceramics: some principles and concepts, J. Wiley, 1965. [35] J.-H. Huang, C.-Y. Hsu, S.-S. Chen, G.-P. Yu, Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel substrates, Mater. Chem. Phys., 77 (2003) 14-21. [36] E. Török, A. Perry, L. Chollet, W. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 153 (1987) 37-43. [37] A.J. Perry, V. Valvoda, D. Rafaja, X-ray residual stress measurement in TiN, ZrN and HfN films using the Seemann-Bohlin method, Thin Solid Films, 214 (1992) 169-174. [38] A. Perry, A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films, 193 (1990) 463-471. [39] P. Jin, S. Maruno, Evaluation of internal stress in reactively sputter-deposited ZrN thin films, Jpn. J. Appl. Phys., 30 (1991) 1463. [40] H. Okamoto, N-Zr (Nitrogen-Zirconium), J. Phase Equilib. Diffus., 27 (2006) 551-551. [41] S. Clarke, C. Michie, M. Rosseinsky, Structure of Zr2ON2 by Neutron Powder Diffraction: The Absence of Nitride–Oxide Ordering, J. Solid State Chem., 146 (1999) 399-405. [42] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films, 197 (1991) 117-128. [43] J.E. Greene, J.E. Sundgren, L. Hultman, I. Petrov, D.B. Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Appl. Phys. Lett., 67 (1995) 2928-2930. [44] C.H. Ma, J.H. Huang, H. Chen, Texture evolution of transition-metal nitride thin films by ion beam assisted deposition, Thin Solid Films, 446 (2004) 184-193. [45] M.-K. Lee, H.-S. Kang, W.-W. Kim, J.-S. Kim, W.-J. Lee, Characteristics of TiN film deposited on stellite using reactive magnetron sputter ion plating, J. Mater. Res., 12 (1997) 2393-2400. [46] Y.H. Cheng, B.K. Tay, S.P. Lau, Influence of deposition temperature on the structure and internal stress of TiN films deposited by filtered cathodic vacuum arc, J. Vac. Sci. Technol., A, 20 (2002) 1270-1274. [47] R. Banerjee, R. Chandra, P. Ayyub, Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films, Thin Solid Films, 405 (2002) 64-72. [48] J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Techol., 201 (2007) 7043-7053. [49] C.-P. Liu, H.-G. Yang, Systematic study of the evolution of texture and electrical properties of ZrNx thin films by reactive DC magnetron sputtering, Thin Solid Films, 444 (2003) 111-119. [50] J.-H. Huang, C.-H. Ho, G.-P. Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si (100) and stainless steel substrates, Mater. Chem. Phys., 102 (2007) 31-38. [51] D. Gall, S. Kodambaka, M. Wall, I. Petrov, J. Greene, Pathways of atomistic processes on TiN (001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys., 93 (2003) 9086-9094. [52] A. Rizzo, M. Signore, M. De Riccardis, L. Capodieci, D. Dimaio, T. Nocco, Influence of growth rate on the structural and morphological properties of TiN, ZrN and TiN/ZrN multilayers, Thin Solid Films, 515 (2007) 6665-6671. [53] L. Koutsokeras, G. Abadias, Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques, J. Appl. Phys., 111 (2012) 093509. [54] H.-M. Tung, J.-H. Huang, D.-G. Tsai, C.-F. Ai, G.-P. Yu, Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment, Mat. Sci. Eng. A-Struct., 500 (2009) 104-108. [55] J.-L. Ruan, D.-F. Lii, J.-S. Chen, J.-L. Huang, Investigation of substrate bias effects on the reactively sputtered ZrN diffusion barrier films, Ceram. Int., 35 (2009) 1999-2005. [56] G. Abadias, Y. Tse, P. Guérin, V. Pelosin, Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering, J. Appl. Phys., 99 (2006) 113519. [57] A.G. Evans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 59 (1976) 371-372. [58] B.R. Lawn, A. Evans, D. Marshall, Elastic/plastic indentation damage in ceramics: the median/radial crack system, J. Am. Ceram. Soc., 63 (1980) 574-581. [59] Z. Xia, W.A. Curtin, B.W. Sheldon, A new method to evaluate the fracture toughness of thin films, Acta Mater., 52 (2004) 3507-3517. [60] X. Li, D. Diao, B. Bhushan, Fracture mechanisms of thin amorphous carbon films in nanoindentation, Acta Mater., 45 (1997) 4453-4461. [61] X. Li, B. Bhushan, Measurement of fracture toughness of ultra-thin amorphous carbon films, Thin Solid Films, 315 (1998) 214-221. [62] T.F. Page, S.V. Hainsworth, Using nanoindentation techniques for the characterization of coated systems: a critique, Surf. Coat. Techol., 61 (1993) 201-208. [63] S.V. Hainsworth, T. Bartlett, T.F. Page, The nanoindentation response of systems with thin hard carbon coatings, Thin Solid Films, 236 (1993) 214-218. [64] R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Haug, J. Patscheider, J. Michler, Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope, Thin Solid Films, 469–470 (2004) 206-213. [65] D.F. Bahr, J.W. Hoehn, N.R. Moody, W.W. Gerberich, Adhesion and acoustic emission analysis of failures in nitride films with a metal interlayer, Acta Mater., 45 (1997) 5163-5175. [66] A.J. Haq, P.R. Munroe, M. Hoffman, P.J. Martin, A. Bendavid, Berkovich indentation of diamondlike carbon coatings on silicon substrates, J. Mater. Res., 23 (2008) 1862-1869. [67] A.J. Whitehead, T.F. Page, Nanoindentation studies of thin film coated systems, Thin Solid Films, 220 (1992) 277-283. [68] A.J. Haq, P.R. Munroe, M. Hoffman, P.J. Martin, A. Bendavid, Effect of coating thickness on the deformation behaviour of diamond-like carbon–silicon system, Thin Solid Films, 518 (2010) 2021-2028. [69] M. Sebastiani, K.E. Johanns, E.G. Herbert, G.M. Pharr, Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges, Curr. Opin. Solid State Mater. Sci. [70] S. Liu, J.M. Wheeler, P.R. Howie, X.T. Zeng, J. Michler, W.J. Clegg, Measuring the fracture resistance of hard coatings, Appl. Phys. Lett., 102 (2013) 171907. [71] M. Sebastiani, K.E. Johanns, E.G. Herbert, F. Carassiti, G.M. Pharr, A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings, Philos. Mag., 95 (2014) 1928-1944. [72] K. Jonnalagadda, S.W. Cho, I. Chasiotis, T. Friedmann, J. Sullivan, Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS, J. Mech. Phys. Solids, 56 (2008) 388-401. [73] I. Chasiotis, W. Knauss, A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy, Experimental Mechanics, 42 (2002) 51-57. [74] J.J. Bellante, H. Kahn, R. Ballarini, C.A. Zorman, M. Mehregany, A.H. Heuer, Fracture toughness of polycrystalline silicon carbide thin films, Appl. Phys. Lett., 86 (2005) -. [75] V. Hatty, H. Kahn, J. Trevino, C.A. Zorman, M. Mehregany, R. Ballarini, A.H. Heuer, Fracture toughness of low-pressure chemical-vapor-deposited polycrystalline silicon carbide thin films, J. Appl. Phys., 99 (2006) -. [76] H. Kahn, R. Ballarini, J.J. Bellante, A.H. Hauer, Fatigue Failure in Polysilicon Not Due to Simple Stress Corrosion Cracking, Science, 298 (2002) 1215-1218. [77] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of ceramic thin films by two-step uniaxial tensile method, Thin Solid Films, 469–470 (2004) 233-238. [78] X. Zhang, S. Zhang, A Microbridge Method in Tensile Testing of Substrate for Fracture Toughness of Thin Films, Nanoscience and Nanotechnology Letters, 3 (2011) 735-743. [79] Standard Test for Plane Strain Fracture Toughness of Metallic Materials, American Society for Testing and Materials ASTME-399, 1987. [80] G. Jaeger, I. Endler, M. Heilmaier, K. Bartsch, A. Leonhardt, A new method of determining strength and fracture toughness of thin hard coatings, Thin Solid Films, 377–378 (2000) 382-388. [81] B. Merle, M. Göken, Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests, Acta Mater., 59 (2011) 1772-1779. [82] S.W. King, G.A. Antonelli, Simple bond energy approach for non-destructive measurements of the fracture toughness of brittle materials, Thin Solid Films, 515 (2007) 7232-7241. [83] A.A. Griffith, The Phenomena of Rupture and Flow in Solids, Philos. Tr. R. Soc. S-A, 221 (1921) 163-198. [84] M. Bielawski, K. Chen, Computational Evaluation of Adhesion and Mechanical Properties of Nanolayered Erosion-Resistant Coatings for Gas Turbines, J. Eng. Gas Turb. Power, 133 (2011) 042102. [85] J. Kim, J. Achenbach, P. Mirkarimi, M. Shinn, S. Barnett, Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy, J. Appl. Phys., 72 (1992) 1805-1811. [86] M. Ohring, Materials Science of Thin Films, Elsevier Science, 2001. [87] L.B. Freund, S. Suresh, Thin film materials: stress, defect formation and surface evolution, Cambridge University Press, 2004. [88] D. Broek, Elementary engineering fracture mechanics, Springer Science & Business Media, 1982. [89] N. Alexandre, M. Desmaison-Brut, F. Valin, M. Boncoeur, Mechanical properties of hot isostatically pressed zirconium nitride materials, J. Mater. Sci., 28 (1993) 2385-2390. [90] J.-H. Huang, H.-C. Yang, X.-J. Guo, G.-P. Yu, Effect of film thickness on the structure and properties of nanocrystalline ZrN thin films produced by ion plating, Surf. Coat. Techol., 195 (2005) 204-213. [91] J.-H. Huang, C.-H. Ho, G.-P. Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates, Mater. Chem. Phys., 102 (2007) 31-38. [92] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-Hill New York, 1986. [93] R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and fracture mechanics of engineering materials, Wiley New York, 1996. [94] M.E. Kipp, G.C. Sih, The strain energy density failure criterion applied to notched elastic solids, Int. J. Solids Struct., 11 (1975) 153-173. [95] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B, 5 (1972) 4709. [96] M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclère, G. Terwagne, M. Hecq, Study of ZrN layers deposited by reactive magnetron sputtering, Surf. Coat. Techol., 174 (2003) 240-245. [97] C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, An XPS study of the interaction of oxygen with zirconium, Surf. Sci., 218 (1989) 331-345. [98] I. Milošev, H.H. Strehblow, M. Gaberšček, B. Navinšek, Electrochemical oxidation of ZrN hard (PVD) coatings studied by XPS, Surf. Interface Anal., 24 (1996) 448-458. [99] M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, X-ray photoelectron spectroscopy analysis of zirconium nitride-like films prepared on Si (100) substrates by ion beam assisted deposition, Surf. Coat. Techol., 202 (2008) 3129-3135. [100] P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 1918 (1918) 98-100. [101] JCPDS file 50-1170 [102] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, 1958. [103] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583. [104] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78. [105] B.B. He, Two-dimensional X-Ray Diffraction, Wiley, 2011. [106] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A Mat., 82 (1909) 172-175. [107] J. Wortman, R. Evans, Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium, J. Appl. Phys., 36 (1965) 153-156. [108] V. Hauk, B. Krüger, A new approach to evaluate steep stress gradients principally using layer removal, in: Materials Science Forum, Trans Tech Publ, 2000, pp. 80-82. [109] J. Kõo, J. Valgur, Layer growing/removing method for the determination of residual stresses in thin inhomogeneous discs, Materials Science Forum, Trans Tech Publ, 2000, pp. 89-94. [110] I. Kraus, G. Gosmanová, On X-ray measurements of residual stresses in materials with lattice strain gradient, Czech. J. Phys., 39 (1989) 751-756. [111] C.L. Azanza Ricardo, M. D'Incau, P. Scardi, Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients, J. Appl. Crystallogr., 40 (2007) 675-683. [112] H.K. Tönshoff, J. Plöger, H. Seegers, Determination of residual stress gradients in brittle materials using an improved spline algorithm, Materials Science Forum, Trans Tech Publ, 2000, pp. 83-88. [113] S.M. Sze, VLSI technology, McGraw-Hill, 1983. [114] W. Ensinger, B. Rauschenbach, Microstructural investigations on titanium nitride films formed by medium energy ion beam assisted deposition, Nucl. Instr. Methods, Phys. Res. B, 80–81, Part 2 (1993) 1409-1414. [115] W. Ensinger, On the mechanism of crystal growth orientation of ion beam assisted deposited thin films, Nucl. Instr. Methods, Phys. Res. B, 106 (1995) 142-146. [116] W.M. Haynes, CRC Handbook of Chemistry and Physics, 93rd Edition, Taylor & Francis, 2012. [117] T.W. Shield, K.S. Kim, Beam theory models for thin film segments cohesively bonded to an elastic half space, Int. J. Solids Struct., 29 (1992) 1085-1103. [118] S.W. King, J.A. Gradner, Intrinsic stress fracture energy measurements for PECVD thin films in the SiOxCyNz:H system, Microelecton. Reliab., 49 (2009) 721-726. [119] H. Oettel, R. Wiedemann, S. Preißler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Techol., 74–75, Part 1 (1995) 273-278. [120] L. Hultman, M. Shinn, P. Mirkarimi, S. Barnett, Characterization of misfit dislocations in epitaxial (001)-oriented TiN, NbN, VN, and (Ti,Nb)N film heterostructures by transmission electron microscopy, J. Cryst. Growth, 135 (1994) 309-317.
|