帳號:guest(18.217.224.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭皓文
作者(外文):Hsiao, Haw Wen
論文名稱(中文):氧對於氮氧化鋯硬膜之破裂靭性的影響
論文名稱(外文):Effect of Oxygen on the Fracture Toughness of Zr(N,O) Hard Coatings
指導教授(中文):黃嘉宏
喻冀平
指導教授(外文):Huang, Jia Hong
Yu, Ge Ping
口試委員(中文):呂福興
董曉明
口試委員(外文):Lu, Fu Hsing
Tung, Hsiao Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011505
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:123
中文關鍵詞:破裂韌性氮氧化鋯氮化鋯織構殘餘應力
外文關鍵詞:fracture toughnessZr(N,O)ZrNtextureresidual stress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:538
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
本研究目的是利用內能致裂法量測氮氧化鋯硬膜的破裂韌性並探討氧對於破裂韌性的影響。氮氧化鋯薄膜利用非平衡磁控濺鍍系統在四種不同氧流量以及固定的氮氣、氬氣流量下進行沉積。結果發現破裂韌性與織構相關,具有(111)織構之氮化鋯薄膜的破裂韌性為26.7±2.1 J/m2, 而具有(200)織構之氮化鋯薄膜則為9.0±0.9 J/m2。含有少許氮氧化鋯相之氮氧化鋯薄膜的破裂韌性介於 8.7±0.9到8.9±0.6 J/m2之間,其氮氧化鋯相可以降低作為裂縫前進驅動力的殘餘應力,使得臨界厚度上升,因而維持與具有(200)織構之氮化鋯相近的破裂韌性值。氧氣流以及氧含量都會影響氮氧化鋯薄膜的結構和伴隨的性質。氧氣流主要會干擾鋯吸附原子的遷移進而影響後續薄膜沉積,因此,氮氧化鋯薄膜的織構由(111)轉換成(200),其電阻因氧氣流干擾造成結晶度的下降而上升。在氮氧化鋯薄膜中的氧含量隨著氧流量的上升而增加,由於在本實驗使用較低能量的鍍膜參數,因此氧化相的形成並不如先前研究顯著。薄膜斷面顯示主裂縫是階梯式成長而非表面散裂,原因是因為試片的邊緣應力遠大於縱深應力梯度產生的剪應力所致。
The objectives of this research were to measure the fracture toughness (Gc) of Zr(N,O) hard coatings using internal energy induced cracking (IEIC) method, and investigate the effect of oxygen on the fracture toughness of the Zr(N,O) coatings. Zr(N,O) coatings were deposited by unbalanced magnetron sputtering with different oxygen flow rates while maintaining constant nitrogen and argon flow rates. The results showed that Gc was texture dependent; for ZrN coatings with (111) texture was 26.7±2.1 J/m2 while that for coatings with (200) texture was 9.0±0.9 J/m2. The fracture toughness of Zr(N,O) coatings with small amount of zirconium oxynitride was between 8.7±0.9 and 8.9±0.6 J/m2. The oxynitride could decrease the residual stress which was the driving force for crack propagation, and thereby allowing the critical thickness to increase. Therefore, the fracture toughness remained nearly the same as that of ZrN with (200) texture. Both oxygen flow and oxygen contents were found to affect the structure and the accompanying properties of the Zr(N,O) coatings. Oxygen flow mainly disturbed the migration of Zr adatoms and the subsequent film formation; consequently, the texture of Zr(N,O) films switched from (111) to (200), and the electrical resistivity increased because of the decrease of crystallinity due to the effect of oxygen flow. The oxygen contents of the Zr(N,O) films increased, but not substantially, with increasing oxygen flow rate. Since lower energy processing parameters were used in this study, the formation of oxide or oxynitride phases was not as distinct as that in our previous studies. The fractography showed that the main crack propagated stepwise instead of by surface spallation, which could be due to the stress distribution in the specimen where the edge stress was much larger than the shear stress induced by the in-depth stress gradient.
摘要 i
Abstract ii
Content iii
List of Figures vi
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Characteristics ZrN and Zr(N,O) 4
2.2 Preferred Orientation of ZrN 9
2.3 Measurement of Fracture Toughness 10
2.3.1 Experimental Methods 10
2.3.2 Theoretical Calculation 19
Chapter 3 Theoretical Basis 21
3.1 Assumptions of the Fracture Model 21
3.2 Energy Release Rate Approach 22
3.3 Griffith’s Criterion Approach 25
Chapter 4 Experimental Details 29
4.1 Specimen Preparation and Deposition Process 29
4.2 Characterization for Composition and Structure 32
4.2.1 X-ray Photoelectron Spectroscopy (XPS) 32
4.2.2 Auger Electron Spectroscopy (AES) 34
4.2.3 X-ray Diffraction (XRD) and Grazing Incident X-ray Diffraction (GIXRD) 34
4.2.4 Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) and Dual beam (Focused Ion Beam & Electron Beam) System (FIB/SEM) 35
4.2.5 Atomic Force Microscopy (AFM) 36
4.3 Characterization for Properties 36
4.3.1 Hardness and Young’s Modulus 36
4.3.2 Residual Stress 37
4.3.2.1 Laser Curvature Method 37
4.3.2.2 XRD cos2αsin2ψ Method and Layer-by-layer Method 38
4.3.3 Fracture Toughness Measurement 42
4.3.4 Electrical Resistivity 42
Chapter 5 Results 45
5.1 Chemical Compositions 49
5.2 Crystal Structure and Texture 52
5.3 Microstructure 55
5.4 Surface Roughness 60
5.5 Fracture Topography 63
5.6 Mechanical Properties 69
5.6.1 Residual Stress 70
5.6.2 Hardness and Young’s Modulus 75
5.6.3 Stored Energy and Fracture Toughness 75
5.7 Electrical Resistivity 78
Chapter 6 Discussion 80
6.1 Effect of Oxygen on Structure and Properties of Zr(N,O) Thin Films 80
6.1.1 Oxide Phase Formation 80
6.1.2 Switch of Preferred Orientation 81
6.1.3 Compositional Variation and Distribution with Different Oxygen Flow Rates 83
6.1.4 Effect of Oxygen on Electrical Resistivity 84
6.2 Fracture Toughness of ZrN and Zr(N,O) Thin Films 87
6.2.1 Effect of Preferred Orientation and Oxynitride on the Fracture Toughness of ZrN and Zr(N,O) Thin Films 87
6.2.2 Critical Stored Energy vs. Critical Stress Intensity Factor 89
6.2.3 Fracture Pattern and Uncertainty of Fracture Toughness 90
6.3 Hardness and Residual Stress 93
Chapter 7 Conclusions 97
References 98
Appendix A Deconvoluted Results of XPS Spectra 105
Appendix B The XRD & GIXRD Patterns 110
Appendix C SEM Images 114
Appendix D XRD cos2αsin2ψ 122
[1] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of thin films: a critical review, Surf. Coat. Techol., 198 (2005) 74-84.
[2] S. Zhang, X. Zhang, Toughness evaluation of hard coatings and thin films, Thin Solid Films, 520 (2012) 2375-2389.
[3] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Techol., 239 (2014) 20-27.
[4] J.-H. Huang, Y.-H. Chen, A.-N. Wang, G.-P. Yu, H. Chen, Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Techol., 258 (2014) 211-218.
[5] Y.-F. Chen, Effect of Composition on the Fracture Toughness of Ti1-xZrxN Hard Coatings, Master Thesis, National Tsing Hua University, Taiwan, (R.O.C.), 2014.
[6] J.-H. Huang, Y.-Y. Hu, G.-P. Yu, Structure evolution and mechanical properties of ZrNxOy thin film deposited on Si by magnetron sputtering, Surf. Coat. Techol., 205 (2011) 5093-5102.
[7] J.-H. Huang, T.-C. Lin, G.-P. Yu, Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel, Surf. Coat. Techol., 206 (2011) 107-116.
[8] P. Panjan, B. Navinšek, A. Žabkar, V. Marinković, D. Mandrino, J. Fišer, Structural analysis of ZrN and TiN films prepared by reactive plasma beam deposition, Thin Solid Films, 228 (1993) 233-237.
[9] P. Johnson, H. Randhawa, Zirconium nitride films prepared by cathodic arc plasma deposition process, Surf. Coat. Techol., 33 (1987) 53-62.
[10] E. Kelesoglu, C. Mitterer, M. Kazmanli, M. Ürgen, Microstructure and properties of nitride and diboride hard coatings deposited under intense mild-energy ion bombardment, Surf. Coat. Techol., 116 (1999) 133-140.
[11] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Techol., 41 (1990) 191-204.
[12] L. Van Leaven, M. Alias, R. Brown, Corrosion behavior of ion plated and implated films, Surf. Coat. Techol., 53 (1992) 25-34.
[13] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Material properties of ZrN film on silicon prepared by low-energy ion-assisted deposition, Surf. Coat. Techol., 66 (1994) 318-322.
[14] L. Toth, Transition metal carbides and nitrides, Elsevier, 2014.
[15] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surf. Coat. Techol., 112 (1999) 108-113.
[16] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si(100), Thin Solid Films, 405 (2002) 162-169.
[17] Z. Wokulski, Mechanical properties of TiN whiskers, Phys. Status Solidi A, 120 (1990) 175-184.
[18] J. Gilles, Preparation Par Reaction a Letat Solide Et Structures Des Oxynitrures De Zirconium, Bull. Soc. Chim. Fr., (1962) 2118-&.
[19] R. Collongues, J. Gilles, A. Lejus, M. Perez, D. Michel, Recherches sur les oxynitrures metalliques, Mater. Res. Bull., 2 (1967) 837-848.
[20] Y. Cheng, D.P. Thompson, Nitrogen‐Containing Tetragonal Zirconia, J. Am. Ceram. Soc., 74 (1991) 1135-1138.
[21] Y.B. Cheng, D.P. Thompson, Role of Anion Vacancies in Nitrogen‐Stabilized Zirconia, J. Am. Ceram. Soc., 76 (1993) 683-688.
[22] M. Lerch, E. Füglein, J. Wrba, Synthesis, crystal structure, and high temperature behavior of Zr3N4, Z. Anorg., Allg. Chem., 622 (1996) 367-372.
[23] W.H. Baur, M. Lerch, On deciding between space groups Pnam and Pna21 for the crystal structure of Zr3N4, Z. Anorg., Allg. Chem., 622 (1996) 1729-1730.
[24] M. Lerch, Nitridation of zirconia, J. Am. Ceram. Soc., 79 (1996) 2641-2644.
[25] M. Lerch, F. Krumeich, R. Hock, Diffusion controlled formation of β type phases in the system ZrO2-Zr3N4, Solid State Ionics, 95 (1997) 87-93.
[26] M. Lerch, O. Rahauser, Subsolidus phase relationships in the ZrO2-rich part of the ZrO2–Zr3N4 system, J. Mater. Sci., 32 (1997) 1357-1363.
[27] M. Lerch, Phase relationships in the ZrO2-Zr3N4 system, J. Mater. Sci. Lett., 17 (1998) 441-443.
[28] A.T. Tham, C. Rödel, M. Lerch, D. Wang, D.S. Su, A. Klein‐Hoffmann, R. Schlögl, Electron microscopy investigations on structures of ZrO2‐rich phases in the quasibinary system ZrO2‐Zr3N4, Cryst. Res. Technol., 39 (2004) 421-428.
[29] M.A. Signore, A. Rizzo, L. Tapfer, E. Piscopiello, L. Capodieci, A. Cappello, Effect of the substrate temperature on zirconium oxynitride thin films deposited by water vapour–nitrogen radiofrequency magnetron sputtering, Thin Solid Films, 518 (2010) 1943-1946.
[30] A. Rizzo, M.A. Signore, L. Mirenghi, A. Cappello, L. Tapfer, Nano-crystalline Zr2ON2 thin films deposited by reactive magnetron sputtering, Surf. Coat. Techol., 204 (2010) 2019-2022.
[31] A. Rizzo, M.A. Signore, L. Mirenghi, L. Tapfer, E. Piscopiello, E. Salernitano, R. Giorgi, Sputtering deposition and characterization of zirconium nitride and oxynitride films, Thin Solid Films, 520 (2012) 3532-3538.
[32] P. Carvalho, J.M. Chappé, L. Cunha, S. Lanceros-Méndez, P. Alpuim, F. Vaz, E. Alves, C. Rousselot, J.P. Espinós, A.R. González-Elipe, Influence of the chemical and electronic structure on the electrical behavior of zirconium oxynitride films, J. Appl. Phys., 103 (2008) -.
[33] JCPDS file 35-0753
[34] J.E. Hove, W.C. Riley, Modern ceramics: some principles and concepts, J. Wiley, 1965.
[35] J.-H. Huang, C.-Y. Hsu, S.-S. Chen, G.-P. Yu, Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel substrates, Mater. Chem. Phys., 77 (2003) 14-21.
[36] E. Török, A. Perry, L. Chollet, W. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 153 (1987) 37-43.
[37] A.J. Perry, V. Valvoda, D. Rafaja, X-ray residual stress measurement in TiN, ZrN and HfN films using the Seemann-Bohlin method, Thin Solid Films, 214 (1992) 169-174.
[38] A. Perry, A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films, 193 (1990) 463-471.
[39] P. Jin, S. Maruno, Evaluation of internal stress in reactively sputter-deposited ZrN thin films, Jpn. J. Appl. Phys., 30 (1991) 1463.
[40] H. Okamoto, N-Zr (Nitrogen-Zirconium), J. Phase Equilib. Diffus., 27 (2006) 551-551.
[41] S. Clarke, C. Michie, M. Rosseinsky, Structure of Zr2ON2 by Neutron Powder Diffraction: The Absence of Nitride–Oxide Ordering, J. Solid State Chem., 146 (1999) 399-405.
[42] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films, 197 (1991) 117-128.
[43] J.E. Greene, J.E. Sundgren, L. Hultman, I. Petrov, D.B. Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Appl. Phys. Lett., 67 (1995) 2928-2930.
[44] C.H. Ma, J.H. Huang, H. Chen, Texture evolution of transition-metal nitride thin films by ion beam assisted deposition, Thin Solid Films, 446 (2004) 184-193.
[45] M.-K. Lee, H.-S. Kang, W.-W. Kim, J.-S. Kim, W.-J. Lee, Characteristics of TiN film deposited on stellite using reactive magnetron sputter ion plating, J. Mater. Res., 12 (1997) 2393-2400.
[46] Y.H. Cheng, B.K. Tay, S.P. Lau, Influence of deposition temperature on the structure and internal stress of TiN films deposited by filtered cathodic vacuum arc, J. Vac. Sci. Technol., A, 20 (2002) 1270-1274.
[47] R. Banerjee, R. Chandra, P. Ayyub, Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films, Thin Solid Films, 405 (2002) 64-72.
[48] J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Techol., 201 (2007) 7043-7053.
[49] C.-P. Liu, H.-G. Yang, Systematic study of the evolution of texture and electrical properties of ZrNx thin films by reactive DC magnetron sputtering, Thin Solid Films, 444 (2003) 111-119.
[50] J.-H. Huang, C.-H. Ho, G.-P. Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si (100) and stainless steel substrates, Mater. Chem. Phys., 102 (2007) 31-38.
[51] D. Gall, S. Kodambaka, M. Wall, I. Petrov, J. Greene, Pathways of atomistic processes on TiN (001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys., 93 (2003) 9086-9094.
[52] A. Rizzo, M. Signore, M. De Riccardis, L. Capodieci, D. Dimaio, T. Nocco, Influence of growth rate on the structural and morphological properties of TiN, ZrN and TiN/ZrN multilayers, Thin Solid Films, 515 (2007) 6665-6671.
[53] L. Koutsokeras, G. Abadias, Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques, J. Appl. Phys., 111 (2012) 093509.
[54] H.-M. Tung, J.-H. Huang, D.-G. Tsai, C.-F. Ai, G.-P. Yu, Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment, Mat. Sci. Eng. A-Struct., 500 (2009) 104-108.
[55] J.-L. Ruan, D.-F. Lii, J.-S. Chen, J.-L. Huang, Investigation of substrate bias effects on the reactively sputtered ZrN diffusion barrier films, Ceram. Int., 35 (2009) 1999-2005.
[56] G. Abadias, Y. Tse, P. Guérin, V. Pelosin, Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering, J. Appl. Phys., 99 (2006) 113519.
[57] A.G. Evans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 59 (1976) 371-372.
[58] B.R. Lawn, A. Evans, D. Marshall, Elastic/plastic indentation damage in ceramics: the median/radial crack system, J. Am. Ceram. Soc., 63 (1980) 574-581.
[59] Z. Xia, W.A. Curtin, B.W. Sheldon, A new method to evaluate the fracture toughness of thin films, Acta Mater., 52 (2004) 3507-3517.
[60] X. Li, D. Diao, B. Bhushan, Fracture mechanisms of thin amorphous carbon films in nanoindentation, Acta Mater., 45 (1997) 4453-4461.
[61] X. Li, B. Bhushan, Measurement of fracture toughness of ultra-thin amorphous carbon films, Thin Solid Films, 315 (1998) 214-221.
[62] T.F. Page, S.V. Hainsworth, Using nanoindentation techniques for the characterization of coated systems: a critique, Surf. Coat. Techol., 61 (1993) 201-208.
[63] S.V. Hainsworth, T. Bartlett, T.F. Page, The nanoindentation response of systems with thin hard carbon coatings, Thin Solid Films, 236 (1993) 214-218.
[64] R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Haug, J. Patscheider, J. Michler, Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope, Thin Solid Films, 469–470 (2004) 206-213.
[65] D.F. Bahr, J.W. Hoehn, N.R. Moody, W.W. Gerberich, Adhesion and acoustic emission analysis of failures in nitride films with a metal interlayer, Acta Mater., 45 (1997) 5163-5175.
[66] A.J. Haq, P.R. Munroe, M. Hoffman, P.J. Martin, A. Bendavid, Berkovich indentation of diamondlike carbon coatings on silicon substrates, J. Mater. Res., 23 (2008) 1862-1869.
[67] A.J. Whitehead, T.F. Page, Nanoindentation studies of thin film coated systems, Thin Solid Films, 220 (1992) 277-283.
[68] A.J. Haq, P.R. Munroe, M. Hoffman, P.J. Martin, A. Bendavid, Effect of coating thickness on the deformation behaviour of diamond-like carbon–silicon system, Thin Solid Films, 518 (2010) 2021-2028.
[69] M. Sebastiani, K.E. Johanns, E.G. Herbert, G.M. Pharr, Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges, Curr. Opin. Solid State Mater. Sci.
[70] S. Liu, J.M. Wheeler, P.R. Howie, X.T. Zeng, J. Michler, W.J. Clegg, Measuring the fracture resistance of hard coatings, Appl. Phys. Lett., 102 (2013) 171907.
[71] M. Sebastiani, K.E. Johanns, E.G. Herbert, F. Carassiti, G.M. Pharr, A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings, Philos. Mag., 95 (2014) 1928-1944.
[72] K. Jonnalagadda, S.W. Cho, I. Chasiotis, T. Friedmann, J. Sullivan, Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS, J. Mech. Phys. Solids, 56 (2008) 388-401.
[73] I. Chasiotis, W. Knauss, A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy, Experimental Mechanics, 42 (2002) 51-57.
[74] J.J. Bellante, H. Kahn, R. Ballarini, C.A. Zorman, M. Mehregany, A.H. Heuer, Fracture toughness of polycrystalline silicon carbide thin films, Appl. Phys. Lett., 86 (2005) -.
[75] V. Hatty, H. Kahn, J. Trevino, C.A. Zorman, M. Mehregany, R. Ballarini, A.H. Heuer, Fracture toughness of low-pressure chemical-vapor-deposited polycrystalline silicon carbide thin films, J. Appl. Phys., 99 (2006) -.
[76] H. Kahn, R. Ballarini, J.J. Bellante, A.H. Hauer, Fatigue Failure in Polysilicon Not Due to Simple Stress Corrosion Cracking, Science, 298 (2002) 1215-1218.
[77] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of ceramic thin films by two-step uniaxial tensile method, Thin Solid Films, 469–470 (2004) 233-238.
[78] X. Zhang, S. Zhang, A Microbridge Method in Tensile Testing of Substrate for Fracture Toughness of Thin Films, Nanoscience and Nanotechnology Letters, 3 (2011) 735-743.
[79] Standard Test for Plane Strain Fracture Toughness of Metallic Materials, American Society for Testing and Materials ASTME-399, 1987.
[80] G. Jaeger, I. Endler, M. Heilmaier, K. Bartsch, A. Leonhardt, A new method of determining strength and fracture toughness of thin hard coatings, Thin Solid Films, 377–378 (2000) 382-388.
[81] B. Merle, M. Göken, Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests, Acta Mater., 59 (2011) 1772-1779.
[82] S.W. King, G.A. Antonelli, Simple bond energy approach for non-destructive measurements of the fracture toughness of brittle materials, Thin Solid Films, 515 (2007) 7232-7241.
[83] A.A. Griffith, The Phenomena of Rupture and Flow in Solids, Philos. Tr. R. Soc. S-A, 221 (1921) 163-198.
[84] M. Bielawski, K. Chen, Computational Evaluation of Adhesion and Mechanical Properties of Nanolayered Erosion-Resistant Coatings for Gas Turbines, J. Eng. Gas Turb. Power, 133 (2011) 042102.
[85] J. Kim, J. Achenbach, P. Mirkarimi, M. Shinn, S. Barnett, Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy, J. Appl. Phys., 72 (1992) 1805-1811.
[86] M. Ohring, Materials Science of Thin Films, Elsevier Science, 2001.
[87] L.B. Freund, S. Suresh, Thin film materials: stress, defect formation and surface evolution, Cambridge University Press, 2004.
[88] D. Broek, Elementary engineering fracture mechanics, Springer Science & Business Media, 1982.
[89] N. Alexandre, M. Desmaison-Brut, F. Valin, M. Boncoeur, Mechanical properties of hot isostatically pressed zirconium nitride materials, J. Mater. Sci., 28 (1993) 2385-2390.
[90] J.-H. Huang, H.-C. Yang, X.-J. Guo, G.-P. Yu, Effect of film thickness on the structure and properties of nanocrystalline ZrN thin films produced by ion plating, Surf. Coat. Techol., 195 (2005) 204-213.
[91] J.-H. Huang, C.-H. Ho, G.-P. Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates, Mater. Chem. Phys., 102 (2007) 31-38.
[92] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-Hill New York, 1986.
[93] R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and fracture mechanics of engineering materials, Wiley New York, 1996.
[94] M.E. Kipp, G.C. Sih, The strain energy density failure criterion applied to notched elastic solids, Int. J. Solids Struct., 11 (1975) 153-173.
[95] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B, 5 (1972) 4709.
[96] M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclère, G. Terwagne, M. Hecq, Study of ZrN layers deposited by reactive magnetron sputtering, Surf. Coat. Techol., 174 (2003) 240-245.
[97] C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, An XPS study of the interaction of oxygen with zirconium, Surf. Sci., 218 (1989) 331-345.
[98] I. Milošev, H.H. Strehblow, M. Gaberšček, B. Navinšek, Electrochemical oxidation of ZrN hard (PVD) coatings studied by XPS, Surf. Interface Anal., 24 (1996) 448-458.
[99] M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, X-ray photoelectron spectroscopy analysis of zirconium nitride-like films prepared on Si (100) substrates by ion beam assisted deposition, Surf. Coat. Techol., 202 (2008) 3129-3135.
[100] P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 1918 (1918) 98-100.
[101] JCPDS file 50-1170
[102] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, 1958.
[103] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
[104] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78.
[105] B.B. He, Two-dimensional X-Ray Diffraction, Wiley, 2011.
[106] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A Mat., 82 (1909) 172-175.
[107] J. Wortman, R. Evans, Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium, J. Appl. Phys., 36 (1965) 153-156.
[108] V. Hauk, B. Krüger, A new approach to evaluate steep stress gradients principally using layer removal, in: Materials Science Forum, Trans Tech Publ, 2000, pp. 80-82.
[109] J. Kõo, J. Valgur, Layer growing/removing method for the determination of residual stresses in thin inhomogeneous discs, Materials Science Forum, Trans Tech Publ, 2000, pp. 89-94.
[110] I. Kraus, G. Gosmanová, On X-ray measurements of residual stresses in materials with lattice strain gradient, Czech. J. Phys., 39 (1989) 751-756.
[111] C.L. Azanza Ricardo, M. D'Incau, P. Scardi, Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients, J. Appl. Crystallogr., 40 (2007) 675-683.
[112] H.K. Tönshoff, J. Plöger, H. Seegers, Determination of residual stress gradients in brittle materials using an improved spline algorithm, Materials Science Forum, Trans Tech Publ, 2000, pp. 83-88.
[113] S.M. Sze, VLSI technology, McGraw-Hill, 1983.
[114] W. Ensinger, B. Rauschenbach, Microstructural investigations on titanium nitride films formed by medium energy ion beam assisted deposition, Nucl. Instr. Methods, Phys. Res. B, 80–81, Part 2 (1993) 1409-1414.
[115] W. Ensinger, On the mechanism of crystal growth orientation of ion beam assisted deposited thin films, Nucl. Instr. Methods, Phys. Res. B, 106 (1995) 142-146.
[116] W.M. Haynes, CRC Handbook of Chemistry and Physics, 93rd Edition, Taylor & Francis, 2012.
[117] T.W. Shield, K.S. Kim, Beam theory models for thin film segments cohesively bonded to an elastic half space, Int. J. Solids Struct., 29 (1992) 1085-1103.
[118] S.W. King, J.A. Gradner, Intrinsic stress fracture energy measurements for PECVD thin films in the SiOxCyNz:H system, Microelecton. Reliab., 49 (2009) 721-726.
[119] H. Oettel, R. Wiedemann, S. Preißler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Techol., 74–75, Part 1 (1995) 273-278.
[120] L. Hultman, M. Shinn, P. Mirkarimi, S. Barnett, Characterization of misfit dislocations in epitaxial (001)-oriented TiN, NbN, VN, and (Ti,Nb)N film heterostructures by transmission electron microscopy, J. Cryst. Growth, 135 (1994) 309-317.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *