帳號:guest(18.116.10.127)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭弘田
作者(外文):Zheng, Hung Tien
論文名稱(中文):開發新型穿透式電子顯微鏡流體樣品台:應用於臨場觀測甲胺鉛碘鈣鈦礦結構合成
論文名稱(外文):Development of Flow Environmental TEM for In-situ Observing of Synthesis of Perovskite(CH3NH3PbI3)
指導教授(中文):陳福榮
指導教授(外文):Chen, Fu Rong
口試委員(中文):莊昀儒
吳文偉
口試委員(外文):Chuang, Yun Ju
Wu,Wen Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:102011503
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:101
中文關鍵詞:臨場觀測鈣鈦礦
外文關鍵詞:In-situPerovskite
相關次數:
  • 推薦推薦:0
  • 點閱點閱:123
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來新穎太陽電池材料-甲胺鉛碘鈣鈦礦(CH3NH3PbI3 Perovskite) 因其光電轉換效率於近五年內從3.8%大幅提升至20.1%而廣受矚目,然而目前尚無研究可以在奈米尺度下直接觀察其形成機制。因此本研究以自行設計開發之TEM流體樣品台(TEM liquid holder)並搭配濕式腔體晶片(flow cell chip)來研究此議題,研究成果包括三個部分: (1)觀測奈米顆粒於液體的注入下而產生位移,可初步確認載具的可用性(2) 觀測到過氧化氫水溶液受到白金顆粒催化影響而分解產生氧氣泡,以及奈米氣泡於液體內進行移動和結合,進而確認於此系統內可觀察到化學反應和其動態結果(3)使用奈米金作為觀測樣品並使用特殊方式控制液體厚度,成功的於液態中將解析度提升至原子級解析度(Å),以利於我們於液態中獲取其最即時之晶格結構的轉變。隨後於TEM下臨場觀察到碘化鉛(PbI2)和甲基碘化胺(MAI)反應形成甲胺鉛碘鈣鈦礦之過程。本研究之成果不僅展示自製TEM流體載具之功能,更將電子顯微鏡臨場觀測技術與新穎能源材料合成領域連結而對重要科學議題做出貢獻。
Perovskite solar cells have received considerable attention in recent years as a promising material capable of developing high performance photovoltaic devices. The efficiency of perovskite solar cells has increased to 20.1% from an initial 3.8% within 5 years. However, until now there is no study can directly observe the formation mechanism of Perovskite in nano scope. Therefore, in this research we developed home-made TEM liquid holder and with flow cell chip to study this issue. This research consists of three sections: (1) Observing nano-particle move via liquid injection, that could be initially confirmed the availability of TEM liquid holder. (2) Observing an aqueous solution of hydrogen peroxide catalyzed by Platinum is decomposed to oxygen nano-bubble movement and merging, that could confirm dynamic motion and chemical reaction are allowed in this system. (3) Successfully level up the resolution to atomic scale (Å) via using special way to control the liquid thickness in order to obtain the transformation of lattice structure in real time. Then in situ observing the process of lead iodide (PbI2) and Methyl ammonium iodide(MAI) to form MAPbI3 (CH3NH3PbI3). Our work not only demonstrates the feasibility of home-made TEM liquid holder but also bridge the in-situ TEM technique with the field of novel energy material synthesis so that make contribution to critical scientific issues.
摘要 i
Abstract ii
章節目錄 iii
表目錄 v
圖目錄 vi
第一章 顯微鏡的發展史 1
第二章 文獻回顧 4
2.1 早期環境式電子顯微鏡系統 4
2.2微型封閉式環境腔體元件 7
2.3流通式臨場觀測電子顯微鏡系統 23
2.4甲胺鉛碘鈣鈦礦太陽能電池崛起 31
第三章 實驗方法 33
3.1 材料與儀器 33
3.1.1 微機電製程材料 33
3.1.2 樣品製備材料 34
3.1.3 流體穿透式電子顯微鏡材料備製 34
3.1.4 觀察量測系統 34
3.2 Flow cell元件結構及製作方式 39
3.3 奈米碳管沉積金白金製作過程 40
3.4 搭載流體穿透式電子顯微鏡 41
第四章 結果與討論 42
4.1 流體TEM載具設計與組裝 42
4.1.1流體TEM載具外部測試 42
4.1.2 流體TEM載具前端設計 46
4.1.3 流體TEM載具組裝與真空測試 49
4.1.4 流體循環系統於光學顯微鏡實體測試 53
4.1.5 流體TEM液體流速之最佳化 55
4.1.5 流體TEM實體測試 56
4.1.6 流體TEM內部液體流向測試 58
4.2 流體TEM即時性觀測白金與過氧化氫之催化反應 61
4.2.1 使用自製流體TEM載具觀測 61
4.3 液態奈米金結構觀測 66
4.3.1奈米金顆粒於液體環境中接合現象 66
4.3.2奈米金顆粒於液體環境中群聚現象 74
4.3.3有效地減薄液體厚度以獲得原子級分辨率 76
4.3.4高解析下觀測奈米金於液態環境中接合和形貌改變 83
4.3.5 EDX分析於臨場觀測後 87
4.4甲胺鉛碘鈣鈦礦臨場觀測 89
4.4.1甲胺鉛碘鈣鈦礦合成機制 89
4.4.2甲胺鉛碘鈣鈦礦溶解現象 93
4.4.3甲胺鉛碘元素分析於臨場觀測後 95

第五章 結論 97
參考文獻 99
[1] “光學顯微技術的新進展.”
[2] “電子顯微鏡技術介紹.”
[3] “A Specimen Reaction Device for the Electron.”
[4] “Structure of Wet Specimens in Electron Microscopy.”
[5] G. DuPou, F. Perrier, L. Durrieu,No title,C.R.Acad.Sci.251:2836, 1960.
[6] “G. DuPou, F. Perrier, L. Durrieu,No title,C.R.Acad.Sci.251:2836, 1960.”
[7] “Fujiyoshi,Specimen-holding device for electron microscope,U.S. Patent 5406087, 1995.”
[8] “Sealed Cell for In-Water Measurements.”
[9] K.-L. Liu, C.-C. Wu, Y.-J. Huang, H.-L. Peng, H.-Y. Chang, P. Chang, L. Hsu, and T.-R. Yew, “Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions.” Lab on a chip, vol. 8, no. 11, pp. 1915–21, Nov. 2008.
[10] D. B. Peckys, G. M. Veith, D. C. Joy, and N. de Jonge, “Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope.,” PloS one, vol. 4, no. 12, p. e8214, Jan. 2009.
[11] T.-W. Huang, S.-Y. Liu, Y.-J. Chuang, H.-Y. Hsieh, C.-Y. Tsai, Y.-T. Huang, U. Mirsaidov, P. Matsudaira, F.-G. Tseng, C.-S. Chang, and F.-R. Chen, “Self-aligned wet-cell for hydrated microbiology observation in TEM.” Lab on a chip, vol. 12, no. 2, pp. 340–7, Jan. 2012.
[12] J. M. Yuk, J. Park, P. Ercius, K. Kim, D. J. Hellebusch, M. F. Crommie, J. Y. Lee, a Zettl, and a P. Alivisatos, “High-resolution EM of colloidal nanocrystal growth using graphene liquid cells.,” Science (New York, N.Y.), vol. 336, no. 6077. pp. 61–4, 06-Apr-2012.
[13] Dongsheng Li, Michael H. Nielsen, Jonathan R. I. Lee, Cathrine Frandsen,
Jillian F. Banfield and James J. De Yoreo, “Direction-Specific Interactions Control Crystal Growth by Oriented Attachment.,” Science (New York, N.Y.) , vol. 336, pp. 1014-18, 25-May-2012.
[14] Guomin Zhu, Yingying Jiang, Wei Huang, Hui Zhang, Fang Linc and Chuanhong Jin, “Atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids.”Chem. Commun., vol. 49, pp. 109944-946, October 2013.
[15] N. de Jonge, W. C. Bigelow, and G. M. Veith, “Atmospheric pressure scanning transmission electron microscopy.,” Nano letters, vol. 10, no. 3, pp. 1028–31, Mar. 2010.
[16]E. a Ring and N. de Jonge, “Microfluidic system for transmission electron microscopy.,” Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, vol. 16, no. 5, pp. 622–9, Oct. 2010.
[17] D. B. Peckys, P. Mazur, K. L. Gould, and N. de Jonge, “Fully hydrated yeast cells imaged with electron microscopy.,” Biophysical journal, vol. 100, no. 10, pp. 2522–9, May 2011.
[18] Madeline J. Dukes, Benjamin W. Jacobs, David G. Morgan, Harshad Hegde and
Deborah F. Kelly, “Visualizing nanoparticle mobility in liquid at atomic resolution.,” Chem. Commun., vol. 49, pp.3007-09, February 2013.
[19] “2012-Highly efficient Pt nanocatalysts synthesized by an OLRS with a controlled temperature loop-EA-YSW.pdf.” .
[20] T. Malis, S. C. Cheng and R. F. Egerton, J. Electron Microsc. Tech.,1988, 8, 193.
[21] T. Song, Q. Chen, H.-P. Zhou, C. Jiang, H.-H. Wang, Y. Yang, Y. Liu, J. You, and Y. Yang, “Perovskite solar cells: film formation and properties,” J. Mater. Chem. A, vol. 3, pp. 9032–9050, 2015.
[22] Y. Zhao and K. Zhu, “Three-step sequential solution deposition of PbI2 -free CH3NH3 PbI3 perovskite,” J. Mater. Chem. A, vol. 3, pp. 9086–9091, 2015.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *