|
[1] H. W. Kroto, J. R. Heath, S. C. O'brien, R. F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162-163. [2] S. Liu, Y.J. LU, M.M. Kappes, J.A. Ibers, The Structure of the C60 Molecule: X-Ray Crystal Structure Determination of a Twin at 110 K, Science, 254 (1991) 408-410. [3] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58. [4] M. Kaempgen, G.S. Duesberg, S. Roth, Transparent carbon nanotube coatings, Applied Surface Science, 252 (2005) 425-429. [5] A. Hirsch, Functionalization of Single-Walled Carbon Nanotubes, Angew. Chem. Int. Ed., 41 (2002) 1853-1859. [6] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes, London: Imperial college press, 35 (1998) 73-81. [7] Y. Ando, X. Zhao, T. Sugai, M. Kumar, Growing carbon nanotubes, materialstoday, 7 (2004) 22-29. [8] T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, Self-Assembly of Tubular Fullerenes, J. Phys. Chem. , 99 (1995) 10694-10697. [9] M. Kumar, Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes:A Review on Growth Mechanism and Mass Production, J. Nanosci. Nanotechnol., 10 (2010) 3739-3758. [10] H. Peng, L.B. Alemany , J.L. Margrave, V.N. Khabashesku, Sidewall Carboxylic Acid Functionalization of Single-Walled Carbon Nanotubes, J. Am. Chem. Soc., 125 (2003) 15174-15182. [11] J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Solution Properties of Single-Walled Carbon Nanotubes, SCIENCE, 282 (1998) 95-98. [12] M. Holzinger, O. Vostrowsky, A. Hirsch, F.Hennrich, M. Kappes, R. Weiss, F. Jellen, Sidewall Functionalization of Carbon Nanotubes, Angew. Chem. Int. Ed., 40 (2001) 4002-4005. [13] D. Eder, Carbon Nanotube−Inorganic Hybrids, Chem. Rev., 110 (2010) 1348-1385. [14] S. Chaudhary, H. Lu, A.M. Muller, C.J. Bardeen, M. Ozkan, Hierarchical Placement and Associated Optoelectronic Impact of Carbon Nanotubes in Polymer-Fullerene Solar Cells, Nano Lett., 7 (2007) 1973-1979. [15] C.Y. Su, A.Y. Lu, Y.L. Chen, C.Y. Wei, P.C. Wang, C.H. Tsai, Chemically-treated single-walled carbon nanotubes as digitated penetrating electrodes in organic solar cells, J. Mater. Chem., 20 (2010) 7034-7042. [16] P.C. Wang, Y.C. Liao, Y.L. Lai, Y.C. Lin, C.Y. Su, C.H. Tsai, Y.J. Hsu, Conversion of pristine and p-doped sulfuric-acid-treated single-walled carbon nanotubes to n-type materials by a facile hydrazine vapor exposure process, Materials Chemistry and Physics, 134 (2012) 325-332. [17] M. Arvis, C. Devillers, M. Gillois, M. Curtat, Isothermal flash photolysis of hydrazine, J. Phys. Chem., 78 (1974) 1356-1360. [18] U. Meyer, S. Ko¨stler, V. Ribitsch, W. Kern, Photochemical Surface Modification of Polytetrafluoroethylene with Hydrazine: Characterization of the Surface with Zeta-Potential Measurements and Spectroscopic Techniques, Macromol. Chem. Phys., 206 (2005) 210-217. [19] R.R. Wenner, A.O. Beckman, THE QUANTUM YIELD IN THE PHOTOCHEMICAL DECOMPOSITION OF GASEOUS HYDRAZINE, J. Am. Chem. Soc., 54 (1932) 2787-2797. [20] D.A. Ramsay, The Absorption Spectra of Free NH and NH2 Radicals Produced by the Flash Photolysis of Hydra-zine, J. Phys. Chem., 57 (1953) 415-418. [21] D. Husain, R.G.W. Norrish, The Explosive Oxidation of Ammonia and Hydrazine Studied by Kinetic Spectroscopy, The Royal Society, 273 (1963) 145-164. [22] Vaghjiani, L. Ghanshyam, Ultraviolet absorption cross sections for N2H4 vapor between 191–291 nm and H (2S) quantum yield in 248 nm photodissociation at 296 K, The Journal of chemical physics, 98 (1993) 2123-2131. [23] H. Tantang, J.Y. Ong, C.L. Loh, X. Dong, P. Chen, Y. Chen, X. Hu, L.P. Tan, L.J. Li, Using oxidation to increase the electrical conductivity of carbon nanotube electrodes, CARBON, 47 (2009) 1867-1870. [24] H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes, J. Phys. Chem. B, 103 (1999) 8116-8121. [25] A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes, Science, 275 (1997) 187-191. [26] M.R. McPhail, J.A. Sells, Z. He, C.C. Chusuei, Charging Nanowalls: Adjusting the Carbon Nanotube Isoelectric Point via Surface Functionalization, J. Phys. Chem. C, 113 (2009) 14102–14109. [27] M.E. Lipin´ ska, S.L.H. Rebelo, M.F.R. Pereira, J.A.N.F. Gomes, C. Freire, J.L. Figueiredo, New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives, CARBON, 50 (2012) 3280-3294. [28] R. Graupner, J. Abraham, A. Vencelova, T. Seyller, F. Hennrich, M.M. Kappes, A. Hirsch, L. Ley, Doping of single-walled carbon nanotube bundles by Brønsted acids, Phys. Chem. Chem. Phys., 5 (2003) 5472-5476. [29] C. Bussy, M. Pinault, J. Cambedouzou, M.J. Landry, P. Jegou, M. Mayne-L'hermite, P. Launois, J. Boczkowski, S. Lanone, Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity, Part Fibre Toxicol, 9 (2012) 1-15. [30] K. Ghosh, M. Kumar, T. Maruyama, Y. Ando, Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution, CARBON, 48 (2010) 191-200.
|