帳號:guest(18.224.59.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李翊榮
作者(外文):Lee, Yi-Zong
論文名稱(中文):分離式內含蛋白在蛋白質工程的延伸應用:環狀重排,膜蛋白接合與結構探討
論文名稱(外文):Expending protein engineering by split intein: circular permutation, membrane protein ligation and structural study
指導教授(中文):蘇士哲
指導教授(外文):Sue, Shih-Che
口試委員(中文):呂平江
鄭惠春
陳金榜
徐尚德
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:101080835
出版年(民國):106
畢業學年度:105
語文別:英文中文
論文頁數:141
中文關鍵詞:內含蛋白分離式內含蛋白環狀重排膜蛋白蛋白質接合
外文關鍵詞:InteinSplit inteinCircular permutationMembrane proteinprotein splicing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:54
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
分離式內含蛋白 (split intein) 被廣泛的應用於蛋白質工程上,其中念珠藻(Nostoc punctiforme, Npu)內所發現的內含蛋白具有較好的反式剪接蛋白質接合(protein trans-splicing)活性。同時,此內含蛋白是少數被發現自然發生的斷口(naturally occurring split site). 此篇論文,將以 Npu DnaE intein 為研究目標,研究Npu DnaE split intein 之結構特性與 protein trans-splicing活性特性。首先的研究內容是利用環狀重排預測系統去尋找其他人工的斷口(artificial split site),此預測方式未來可以運用於找尋其他新發現內含蛋白的斷口。接下來我們利用環狀重排技術制備Npu DnaE split intein 並利用核磁共振與X-ray來探討蛋白質的液態與晶體結構。再探討完結構分析後,我們利用Npu DnaE split intein於不同的洗滌劑與變性劑下進行反式剪接蛋白質接合活性測試。結果發現於多數的洗滌劑與變性劑下,Npu DnaE split intein仍然保有反式剪接蛋白質接合活性,除了帶電的洗滌劑與變性劑。同時我們在結構裡面發現,Npu DnaE split intein在結合的表面上有形成六組鹽橋(salt bridge)。當Npu DnaE split intein於高鹽環境結合時,此六組鹽橋會受到鹽的影響造成結合力下降與活性下降。最後我們利用Npu DnaE intein對鹽的靈敏度進而調控C端的分離反應。
Split inteins have been widely applied in protein engineering, and the Nostoc punctiforme (Npu) DnaE split intein has been reported to have outstanding activity. To expand usage of split intein, we firstly used a circular permutation predictor (CPred) to assist discovery of new artificial split inteins. Furthermore, we customized a method based on circular permutation (CP) concept to efficiently prepare naturally occurred split intein of NpuDnaE (NpuInt102) for NMR and X-Ray study. Crystal structure of NpuInt102 was solved and represented a structural state after protein trans-splicing. The structure has high similarity to one-fragment intein. However, few structural differences occurred in the opening split site and catalytic core. To evaluate the potential in applying split intein to membrane proteins, we tested protein trans-splicing under hydrophobic environments and found that intein could well perform protein trans-splicing, except in the presence of ionic solutes. The crystal structure of NpuInt102 indicated that 6 salt-bridges distribute on the assembling interface. The ionic solutes might impede the assembling between the two fragments by reducing electrostatic force. Based on the sensitivity to ions, we employed this feature to make intein to be a great fusion tag that the cleavage could easily remove from target proteins, regulated by salt concentration.
ABSTRACT I
摘要 II
ACKNOWLEDGMENT III
ABBREVIATIONS IV
Chapter I: General introduction of protein splicing 1
Chapter II: Applying circular permutation to identify the new artificial NpuDnaE split intein 11
II.1 Circular permutation 11
II.2 Circular Permutation Prediction (CPred) 11
II.3 Characterization of residues at CP sites 12
II.4 Using CPred to identify the new artificial NpuDnaE split intein 14
II.5 PRECEDURE 15
II.6 Case study 17
II.7 Summary 18
Chapter III: Protein preparation and structure of NpuDnaE and NpuDnaE102 24
III.1 The traditional method for preparation of split intein 24
III.2 A streamline method for preparation of split intein 27
III.3 Structure study in solution NMR 29
III.4 Solution structure comparison of NpuDnaE and NpuDnaE102 30
III.5 Crystal structure of NpuDnaE102 32
III.6 Conclusion 33
Chapter IV: Structural basis of detergent- and denaturant-resistant split intein 44
IV.1 Protein trans-splicing of naturally and artificial split inteins 45
IV.2 Splicing kinetics of split inteins in the presence of denaturants 46
IV.3 Trans-splicing kinetics in the presence of detergents 47
IV.4 Salt-bridges on interface 48
IV.5 Ionic strength affecting protein ligation activity 49
IV.6 Structure comparison between NpuInt102 and HutMCM2Intsplit 50
IV.7 Applying protein trans-splicing to ligate OmpX under denaturant 51
IV.8 Potential in applying on membrane proteins 51
IV.9 Conclusion 52
Chapter V: The application of side reactions during protein splicing 65
V.1 Cleavage of protein splicing 65
V.2 Tag-less protein splicing 66
V.3 Discussion 67
Chapter VI: Addition information for experimental details 74
VI.1 The concept of CPred program 74
VI.2 Protein expression and purification 75
VI.3 Protein trans-splicing assay in vitro 76
VI.4 Isothermal titration calorimetry (ITC) 78
VI.5 NMR measurement and resonance assignment. 78
VI.6 NMR 1H-15N HSQC spectrum and hydrogen/deuterium exchange experiment 79
VI.7 Crystallization, data collection and processing 80
VI.8 OmpX ligation 81
References:
1. Hirata, R.; Ohsumk, Y.; Nakano, A.; Kawasaki, H.; Suzuki, K.; Anraku, Y., Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. Journal of Biological Chemistry 1990, 265 (12), 6726-33.
2. Kane, P. M.; Yamashiro, C. T.; Wolczyk, D. F.; Neff, N.; Goebl, M.; Stevens, T. H., Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase. Science 1990, 250 (4981), 651-7.
3. Paulus, H., Protein splicing and related forms of protein autoprocessing. Annual Review of Biochemistry 2000, 69, 447-96.
4. Volkmann, G.; Iwai, H., Protein trans-splicing and its use in structural biology: opportunities and limitations. Molecular BioSystems 2010, 6 (11), 2110-21.
5. Mootz, H. D.; Muir, T. W., Protein splicing triggered by a small molecule. Journal of the American Chemical Society 2002, 124 (31), 9044-5.
6. Zeidler, M. P.; Tan, C.; Bellaiche, Y.; Cherry, S.; Hader, S.; Gayko, U.; Perrimon, N., Temperature-sensitive control of protein activity by conditionally splicing inteins. Nature Biotechnology 2004, 22 (7), 871-6.
7. Callahan, B. P.; Topilina, N. I.; Stanger, M. J.; Van Roey, P.; Belfort, M., Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Nature Structural Biology 2011, 18 (5), 630-3.
8. Aranko, A. S.; Oeemig, J. S.; Kajander, T.; Iwai, H., Intermolecular domain swapping induces intein-mediated protein alternative splicing. Nature Chemical Biology 2013, 9 (10), 616-22.
9. Topilina, N. I.; Novikova, O.; Stanger, M.; Banavali, N. K.; Belfort, M., Post-translational environmental switch of RadA activity by extein-intein interactions in protein splicing. Nucleic Acids Research 2015, 43 (13), 6631-48.
10. Perler, F. B.; Allewell, N. M., Evolution, mechanisms, and applications of intein-mediated protein splicing. Journal of Biological Chemistry 2014, 289 (21), 14488-9.
11. Shah, N. H.; Muir, T. W., Inteins: Nature's Gift to Protein Chemists. Chemical Science 2014, 5 (1), 446-461.
12. Southworth, M. W.; Adam, E.; Panne, D.; Byer, R.; Kautz, R.; Perler, F. B., Control of protein splicing by intein fragment reassembly. EMBO Journal 1998, 17 (4), 918-26.
13. Zuger, S.; Iwai, H., Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nature Biotechnology 2005, 23 (6), 736-40.
14. Wong, S.; Mosabbir, A. A.; Truong, K., An Engineered Split Intein for Photoactivated Protein Trans-Splicing. PLoS One 2015, 10 (8), e0135965.
15. Ciragan, A.; Aranko, A. S.; Tascon, I.; Iwai, H., Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool. Journal of Molecular Biology 2016, 428 (23), 4573-4588.
16. Hirata, R.; Ohsumk, Y.; Nakano, A.; Kawasaki, H.; Suzuki, K.; Anraku, Y., Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 1990, 265 (12), 6726-33.
17. Kane, P. M.; Yamashiro, C. T.; Wolczyk, D. F.; Neff, N.; Goebl, M.; Stevens, T. H., Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 1990, 250 (4981), 651-7.
18. Perler, F. B., InBase, the New England Biolabs Intein Database. Nucleic Acids Research 1999, 27 (1), 346-7.
19. Perler, F. B., InBase, the Intein Database. Nucleic Acids Research 2000, 28 (1), 344-5.
20. Perler, F. B., InBase: the Intein Database. Nucleic Acids Research 2002, 30 (1), 383-4.
21. Pietrokovski, S., Intein spread and extinction in evolution. Trends in Genetics 2001, 17 (8), 465-72.
22. Zettler, J.; Schutz, V.; Mootz, H. D., The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Letters 2009, 583 (5), 909-14.
23. Wu, Q.; Gao, Z.; Wei, Y.; Ma, G.; Zheng, Y.; Dong, Y.; Liu, Y., Conserved residues that modulate protein trans-splicing of Npu DnaE split intein. Biochemical Journal 2014, 461 (2), 247-55.
24. Sakakibara, N.; Han, M.; Rollor, C. R.; Gilson, R. C.; Busch, C.; Heo, G.; Kelman, Z., Cloning, Purification, and Partial Characterization of the Halobacterium sp. NRC-1 Minichromosome Maintenance (MCM) Helicase. Open Microbiol J 2008, 2, 13-7.
25. Ellila, S.; Jurvansuu, J. M.; Iwai, H., Evaluation and comparison of protein splicing by exogenous inteins with foreign exteins in Escherichia coli. FEBS Letters 2011, 585 (21), 3471-7.
26. Aranko, A. S.; Wlodawer, A.; Iwai, H., Nature's recipe for splitting inteins. Protein Engineering Design & Selection 2014, 27 (8), 263-271.
27. Volkmann, G.; Mootz, H. D., Recent progress in intein research: from mechanism to directed evolution and applications. CMLS Cellular and Molecular Life Sciences 2013, 70 (7), 1185-206.
28. Shah, N. H.; Eryilmaz, E.; Cowburn, D.; Muir, T. W., Naturally split inteins assemble through a "capture and collapse" mechanism. Journal of the American Chemical Society 2013, 135 (49), 18673-81.
29. Tsai, L. C.; Shyur, L. F.; Lee, S. H.; Lin, S. S.; Yuan, H. S., Crystal structure of a natural circularly permuted jellyroll protein: 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes. Journal of Molecular Biology 2003, 330 (3), 607-20.
30. Ribeiro, E. A., Jr.; Ramos, C. H., Circular permutation and deletion studies of myoglobin indicate that the correct position of its N-terminus is required for native stability and solubility but not for native-like heme binding and folding. Biochemistry 2005, 44 (12), 4699-709.
31. Lee, Y. Z.; Lo, W. C.; Sue, S. C., Computational Prediction of New Intein Split Sites. Methods in Molecular Biology 2017, 1495, 259-268.
32. Lee, Y. Z.; Lee, Y. T.; Lin, Y. J.; Chen, Y. J.; Sue, S. C., A streamlined method for preparing split intein for NMR study. Protein Expression and Purification 2014, 99, 106-12.
33. Xu, R.; Ayers, B.; Cowburn, D.; Muir, T. W., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (2), 388-93.
34. Otomo, T.; Ito, N.; Kyogoku, Y.; Yamazaki, T., NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 1999, 38 (49), 16040-4.
35. Brenzel, S.; Cebi, M.; Reiss, P.; Koert, U.; Mootz, H. D., Expanding the scope of protein trans-splicing to fragment ligation of an integral membrane protein: towards modulation of porin-based ion channels by chemical modification. Chembiochem 2009, 10 (6), 983-6.
36. Yu, Y.; Lutz, S., Circular permutation: a different way to engineer enzyme structure and function. Trends in Biotechnology 2011, 29 (1), 18-25.
37. Lo, W. C.; Lyu, P. C., CPSARST: an efficient circular permutation search tool applied to the detection of novel protein structural relationships. Genome Biol 2008, 9 (1), R11.
38. Lindqvist, Y.; Schneider, G., Circular permutations of natural protein sequences: structural evidence. Current Opinion in Structural Biology 1997, 7 (3), 422-7.
39. Vogel, C.; Morea, V., Duplication, divergence and formation of novel protein topologies. Bioessays 2006, 28 (10), 973-8.
40. Qian, Z.; Lutz, S., Improving the catalytic activity of Candida antarctica lipase B by circular permutation. Journal of the American Chemical Society 2005, 127 (39), 13466-7.
41. Todd, A. E.; Orengo, C. A.; Thornton, J. M., Plasticity of enzyme active sites. Trends in Biochemical Sciences 2002, 27 (8), 419-26.
42. Li, L.; Shakhnovich, E. I., Different circular permutations produced different folding nuclei in proteins: a computational study. Journal of Molecular Biology 2001, 306 (1), 121-32.
43. Bulaj, G.; Koehn, R. E.; Goldenberg, D. P., Alteration of the disulfide-coupled folding pathway of BPTI by circular permutation. Protein Science 2004, 13 (5), 1182-96.
44. Chen, J.; Wang, J.; Wang, W., Transition states for folding of circular-permuted proteins. Proteins 2004, 57 (1), 153-71.
45. Cunningham, B. A.; Hemperly, J. J.; Hopp, T. P.; Edelman, G. M., Favin versus concanavalin A: Circularly permuted amino acid sequences. Proceedings of the National Academy of Sciences of the United States of America 1979, 76 (7), 3218-3222.
46. Lo, W. C.; Huang, P. J.; Chang, C. H.; Lyu, P. C., Protein structural similarity search by Ramachandran codes. BMC Bioinformatics 2007, 8, 307.
47. Lo, W. C.; Lee, C. C.; Lee, C. Y.; Lyu, P. C., CPDB: a database of circular permutation in proteins. Nucleic Acids Research 2009, 37 (Database issue), D328-32.
48. Lo, W. C.; Wang, L. F.; Liu, Y. Y.; Dai, T.; Hwang, J. K.; Lyu, P. C., CPred: a web server for predicting viable circular permutations in proteins. Nucleic Acids Research 2012, 40 (Web Server issue), W232-7.
49. Iwakura, M.; Nakamura, T.; Yamane, C.; Maki, K., Systematic circular permutation of an entire protein reveals essential folding elements. Nature Structural Biology 2000, 7 (7), 580-5.
50. Paszkiewicz, K. H.; Sternberg, M. J.; Lappe, M., Prediction of viable circular permutants using a graph theoretic approach. Bioinformatics 2006, 22 (11), 1353-8.
51. Panchenko, A. R.; Madej, T., Structural similarity of loops in protein families: toward the understanding of protein evolution. BMC Evolutionary Biology 2005, 5, 10.
52. Crasto, C. J.; Feng, J., Sequence codes for extended conformation: a neighbor-dependent sequence analysis of loops in proteins. Proteins 2001, 42 (3), 399-413.
53. Lyu, P. C.; Liff, M. I.; Marky, L. A.; Kallenbach, N. R., Side chain contributions to the stability of alpha-helical structure in peptides. Science 1990, 250 (4981), 669-73.
54. Chakrabartty, A.; Kortemme, T.; Baldwin, R. L., Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Science 1994, 3 (5), 843-52.
55. Moreau, R. J.; Schubert, C. R.; Nasr, K. A.; Torok, M.; Miller, J. S.; Kennedy, R. J.; Kemp, D. S., Context-independent, temperature-dependent helical propensities for amino acid residues. Journal of the American Chemical Society 2009, 131 (36), 13107-16.
56. Lo, W. C.; Dai, T.; Liu, Y. Y.; Wang, L. F.; Hwang, J. K.; Lyu, P. C., Deciphering the preference and predicting the viability of circular permutations in proteins. PLoS One 2012, 7 (2), e31791.
57. Iwai, H.; Zuger, S.; Jin, J.; Tam, P. H., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Letters 2006, 580 (7), 1853-8.
58. Wu, H.; Hu, Z.; Liu, X. Q., Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proceedings of the National Academy of Sciences of the United States of America 1998, 95 (16), 9226-31.
59. Aranko, A. S.; Wlodawer, A.; Iwai, H., Nature's recipe for splitting inteins. Protein Eng Des Sel 2014, 27 (8), 263-71.
60. Muralidharan, V.; Muir, T. W., Protein ligation: an enabling technology for the biophysical analysis of proteins. Nature Methods 2006, 3 (6), 429-38.
61. Sun, W.; Yang, J.; Liu, X. Q., Synthetic two-piece and three-piece split inteins for protein trans-splicing. Journal of Biological Chemistry 2004, 279 (34), 35281-6.
62. Aranko, A. S.; Zuger, S.; Buchinger, E.; Iwai, H., In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins. PLoS One 2009, 4 (4), e5185.
63. Ludwig, C.; Schwarzer, D.; Zettler, J.; Garbe, D.; Janning, P.; Czeslik, C.; Mootz, H. D., Semisynthesis of proteins using split inteins. Methods in Enzymology 2009, 462, 77-96.
64. Mootz, H. D., Split inteins as versatile tools for protein semisynthesis. Chembiochem 2009, 10 (16), 2579-89.
65. Lee, Y. T.; Su, T. H.; Lo, W. C.; Lyu, P. C.; Sue, S. C., Circular permutation prediction reveals a viable backbone disconnection for split proteins: an approach in identifying a new functional split intein. PLoS One 2012, 7 (8), e43820.
66. Lee, B.; Richards, F. M., The interpretation of protein structures: estimation of static accessibility. Journal of Molecular Biology 1971, 55 (3), 379-400.
67. Shah, N. H.; Eryilmaz, E.; Cowburn, D.; Muir, T. W., Naturally Split Inteins Assemble through a "Capture and Collapse" Mechanism. Journal of the American Chemical Society 2013.
68. Heinemann, U.; Hahn, M., Circular permutation of polypeptide chains: implications for protein folding and stability. Progress in Biophysics & Molecular Biology 1995, 64 (2-3), 121-43.
69. Oeemig, J. S.; Aranko, A. S.; Djupsjobacka, J.; Heinamaki, K.; Iwai, H., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Letters 2009, 583 (9), 1451-6.
70. Du, Z.; Zheng, Y.; Patterson, M.; Liu, Y.; Wang, C., pK(a) coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate. Journal of the American Chemical Society 2011, 133 (26), 10275-82.
71. Chen, W.; Li, L.; Du, Z.; Liu, J.; Reitter, J. N.; Mills, K. V.; Linhardt, R. J.; Wang, C., Intramolecular disulfide bond between catalytic cysteines in an intein precursor. Journal of the American Chemical Society 2012, 134 (5), 2500-3.
72. Shi, J.; Muir, T. W., Development of a tandem protein trans-splicing system based on native and engineered split inteins. Journal of the American Chemical Society 2005, 127 (17), 6198-206.
73. Metzler, W. J.; Constantine, K. L.; Friedrichs, M. S.; Bell, A. J.; Ernst, E. G.; Lavoie, T. B.; Mueller, L., Characterization of the three-dimensional solution structure of human profilin: 1H, 13C, and 15N NMR assignments and global folding pattern. Biochemistry 1993, 32 (50), 13818-29.
74. Holm, L.; Rosenstrom, P., Dali server: conservation mapping in 3D. Nucleic Acids Research 2010, 38 (Web Server issue), W545-9.
75. Du, Z.; Shemella, P. T.; Liu, Y.; McCallum, S. A.; Pereira, B.; Nayak, S. K.; Belfort, G.; Belfort, M.; Wang, C., Highly conserved histidine plays a dual catalytic role in protein splicing: a pKa shift mechanism. Journal of the American Chemical Society 2009, 131 (32), 11581-9.
76. Du, Z.; Zheng, Y.; Patterson, M.; Liu, Y.; Wang, C., pKa coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate. J Am Chem Soc 2011, 133 (26), 10275-82.
77. Frutos, S.; Goger, M.; Giovani, B.; Cowburn, D.; Muir, T. W., Branched intermediate formation stimulates peptide bond cleavage in protein splicing. Nature Chemical Biology 2010, 6 (7), 527-33.
78. Shah, N. H.; Vila-Perello, M.; Muir, T. W., Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angewandte Chemie, International Edition in English 2011, 50 (29), 6511-5.
79. Englander, S. W.; Sosnick, T. R.; Englander, J. J.; Mayne, L., Mechanisms and uses of hydrogen exchange. Current Opinion in Structural Biology 1996, 6 (1), 18-23.
80. Bjellqvist, B.; Basse, B.; Olsen, E.; Celis, J. E., Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 1994, 15 (3-4), 529-39.
81. Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research 2014, 42 (Web Server issue), W252-8.
82. Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22 (2), 195-201.
83. Guex, N.; Peitsch, M. C.; Schwede, T., Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 2009, 30 Suppl 1, S162-73.
84. Kiefer, F.; Arnold, K.; Kunzli, M.; Bordoli, L.; Schwede, T., The SWISS-MODEL Repository and associated resources. Nucleic Acids Research 2009, 37 (Database issue), D387-92.
85. Fernandez, C.; Adeishvili, K.; Wuthrich, K., Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proceedings of the National Academy of Sciences of the United States of America 2001, 98 (5), 2358-63.
86. Fernandez, C.; Hilty, C.; Wider, G.; Wuthrich, K., Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (21), 13533-7.
87. Huang, C.; Mohanty, S., Challenging the limit: NMR assignment of a 31 kDa helical membrane protein. Journal of the American Chemical Society 2010, 132 (11), 3662-3.
88. Busche, A. E.; Aranko, A. S.; Talebzadeh-Farooji, M.; Bernhard, F.; Dotsch, V.; Iwai, H., Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angewandte Chemie, International Edition in English 2009, 48 (33), 6128-31.
89. Rawlings, A. E.; Bramble, J. P.; Hounslow, A. M.; Williamson, M. P.; Monnington, A. E.; Cooke, D. J.; Staniland, S. S., Ferrous Iron Binding Key to Mms6 Magnetite Biomineralisation: A Mechanistic Study to Understand Magnetite Formation Using pH Titration and NMR Spectroscopy. Chemistry 2016, 22 (23), 7885-94.
90. Amitai, G.; Shemesh, A.; Sitbon, E.; Shklar, M.; Netanely, D.; Venger, I.; Pietrokovski, S., Network analysis of protein structures identifies functional residues. Journal of Molecular Biology 2004, 344 (4), 1135-46.
91. Mori, S.; Abeygunawardana, C.; Johnson, M. O.; van Zijl, P. C., Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. Journal of Magnetic Resonance B 1995, 108 (1), 94-8.
92. Grzesiek, S.; Dobeli, H.; Gentz, R.; Garotta, G.; Labhardt, A. M.; Bax, A., 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-gamma. Biochemistry 1992, 31 (35), 8180-90.
93. Yamazaki, T.; Lee, W.; Arrowsmith, C.; Muhandiram, D.; Kay, L., A suite of triple resonance NMR experiment for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. Journal of the American Chemical Society 1994, 116, 11655–11666.
94. Kay, L. E.; Xu, G. Y.; Yamazaki, T., Enhanced-Sensitivity Triple-Resonance Spectroscopy with Minimal H2O Saturation. Journal of Magnetic Resonance Series A 1994, 109 (1), 129-133.
95. Muhandiram, D. R.; Kay, L. E., Gradient-Enhanced Triple-Resonance 3-Dimensional Nmr Experiments with Improved Sensitivity. Journal of Magnetic Resonance Series B 1994, 103 (3), 203-216.
96. Carlomagno, T.; Maurer, M.; Sattler, M.; Schwendinger, M. G.; Glaser, S. J.; Griesinger, C., PLUSH TACSY: Homonuclear planar TACSY with two-band selective shaped pulses applied to C-alpha,C' transfer and C-beta,C-aromatic correlations. Journal of Biomolecular Nmr 1996, 8 (2), 161-170.
97. Kay, L. E.; Xu, G. Y.; Singer, A. U.; Muhandiram, D. R.; Formankay, J. D., A Gradient-Enhanced Hcch Tocsy Experiment for Recording Side-Chain 1H and 13C Correlations in H2O Samples of Proteins. Journal of Magnetic Resonance Series B 1993, 101 (3), 333-337.
98. Yamazaki, T.; Formankay, J. D.; Kay, L. E., 2-Dimensional Nmr Experiments for Correlating 13CB and 1HD,E Chemical-Shifts of Aromatic Residues in 13C-Labeled Proteins Via Scalar Couplings. Journal of the American Chemical Society 1993, 115 (23), 11054-11055.
99. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A., NMRPipe: a multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR 1995, 6 (3), 277-93.
100. Kneller, T. D. G. a. D. G., SPARKY 3. University of California, San Francisco.
101. Lee, W.; Tonelli, M.; Markley, J. L., NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 2015, 31 (8), 1325-7.
102. Emsley, P.; Cowtan, K., Coot: model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography 2004, 60 (Pt 12 Pt 1), 2126-32.
103. Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography 2010, 66 (Pt 2), 213-21.
104. Laskowski, R. A., MacArthur, M. W., Moss, D. S., Thornton, J. M., PROCHECK - a program to check the stereochemical quality of protein structures. Acta Crystallographica Section D Biological Crystallography 1993, 26, 283-291.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *