|
References: 1. Hirata, R.; Ohsumk, Y.; Nakano, A.; Kawasaki, H.; Suzuki, K.; Anraku, Y., Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. Journal of Biological Chemistry 1990, 265 (12), 6726-33. 2. Kane, P. M.; Yamashiro, C. T.; Wolczyk, D. F.; Neff, N.; Goebl, M.; Stevens, T. H., Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase. Science 1990, 250 (4981), 651-7. 3. Paulus, H., Protein splicing and related forms of protein autoprocessing. Annual Review of Biochemistry 2000, 69, 447-96. 4. Volkmann, G.; Iwai, H., Protein trans-splicing and its use in structural biology: opportunities and limitations. Molecular BioSystems 2010, 6 (11), 2110-21. 5. Mootz, H. D.; Muir, T. W., Protein splicing triggered by a small molecule. Journal of the American Chemical Society 2002, 124 (31), 9044-5. 6. Zeidler, M. P.; Tan, C.; Bellaiche, Y.; Cherry, S.; Hader, S.; Gayko, U.; Perrimon, N., Temperature-sensitive control of protein activity by conditionally splicing inteins. Nature Biotechnology 2004, 22 (7), 871-6. 7. Callahan, B. P.; Topilina, N. I.; Stanger, M. J.; Van Roey, P.; Belfort, M., Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Nature Structural Biology 2011, 18 (5), 630-3. 8. Aranko, A. S.; Oeemig, J. S.; Kajander, T.; Iwai, H., Intermolecular domain swapping induces intein-mediated protein alternative splicing. Nature Chemical Biology 2013, 9 (10), 616-22. 9. Topilina, N. I.; Novikova, O.; Stanger, M.; Banavali, N. K.; Belfort, M., Post-translational environmental switch of RadA activity by extein-intein interactions in protein splicing. Nucleic Acids Research 2015, 43 (13), 6631-48. 10. Perler, F. B.; Allewell, N. M., Evolution, mechanisms, and applications of intein-mediated protein splicing. Journal of Biological Chemistry 2014, 289 (21), 14488-9. 11. Shah, N. H.; Muir, T. W., Inteins: Nature's Gift to Protein Chemists. Chemical Science 2014, 5 (1), 446-461. 12. Southworth, M. W.; Adam, E.; Panne, D.; Byer, R.; Kautz, R.; Perler, F. B., Control of protein splicing by intein fragment reassembly. EMBO Journal 1998, 17 (4), 918-26. 13. Zuger, S.; Iwai, H., Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nature Biotechnology 2005, 23 (6), 736-40. 14. Wong, S.; Mosabbir, A. A.; Truong, K., An Engineered Split Intein for Photoactivated Protein Trans-Splicing. PLoS One 2015, 10 (8), e0135965. 15. Ciragan, A.; Aranko, A. S.; Tascon, I.; Iwai, H., Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool. Journal of Molecular Biology 2016, 428 (23), 4573-4588. 16. Hirata, R.; Ohsumk, Y.; Nakano, A.; Kawasaki, H.; Suzuki, K.; Anraku, Y., Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 1990, 265 (12), 6726-33. 17. Kane, P. M.; Yamashiro, C. T.; Wolczyk, D. F.; Neff, N.; Goebl, M.; Stevens, T. H., Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 1990, 250 (4981), 651-7. 18. Perler, F. B., InBase, the New England Biolabs Intein Database. Nucleic Acids Research 1999, 27 (1), 346-7. 19. Perler, F. B., InBase, the Intein Database. Nucleic Acids Research 2000, 28 (1), 344-5. 20. Perler, F. B., InBase: the Intein Database. Nucleic Acids Research 2002, 30 (1), 383-4. 21. Pietrokovski, S., Intein spread and extinction in evolution. Trends in Genetics 2001, 17 (8), 465-72. 22. Zettler, J.; Schutz, V.; Mootz, H. D., The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Letters 2009, 583 (5), 909-14. 23. Wu, Q.; Gao, Z.; Wei, Y.; Ma, G.; Zheng, Y.; Dong, Y.; Liu, Y., Conserved residues that modulate protein trans-splicing of Npu DnaE split intein. Biochemical Journal 2014, 461 (2), 247-55. 24. Sakakibara, N.; Han, M.; Rollor, C. R.; Gilson, R. C.; Busch, C.; Heo, G.; Kelman, Z., Cloning, Purification, and Partial Characterization of the Halobacterium sp. NRC-1 Minichromosome Maintenance (MCM) Helicase. Open Microbiol J 2008, 2, 13-7. 25. Ellila, S.; Jurvansuu, J. M.; Iwai, H., Evaluation and comparison of protein splicing by exogenous inteins with foreign exteins in Escherichia coli. FEBS Letters 2011, 585 (21), 3471-7. 26. Aranko, A. S.; Wlodawer, A.; Iwai, H., Nature's recipe for splitting inteins. Protein Engineering Design & Selection 2014, 27 (8), 263-271. 27. Volkmann, G.; Mootz, H. D., Recent progress in intein research: from mechanism to directed evolution and applications. CMLS Cellular and Molecular Life Sciences 2013, 70 (7), 1185-206. 28. Shah, N. H.; Eryilmaz, E.; Cowburn, D.; Muir, T. W., Naturally split inteins assemble through a "capture and collapse" mechanism. Journal of the American Chemical Society 2013, 135 (49), 18673-81. 29. Tsai, L. C.; Shyur, L. F.; Lee, S. H.; Lin, S. S.; Yuan, H. S., Crystal structure of a natural circularly permuted jellyroll protein: 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes. Journal of Molecular Biology 2003, 330 (3), 607-20. 30. Ribeiro, E. A., Jr.; Ramos, C. H., Circular permutation and deletion studies of myoglobin indicate that the correct position of its N-terminus is required for native stability and solubility but not for native-like heme binding and folding. Biochemistry 2005, 44 (12), 4699-709. 31. Lee, Y. Z.; Lo, W. C.; Sue, S. C., Computational Prediction of New Intein Split Sites. Methods in Molecular Biology 2017, 1495, 259-268. 32. Lee, Y. Z.; Lee, Y. T.; Lin, Y. J.; Chen, Y. J.; Sue, S. C., A streamlined method for preparing split intein for NMR study. Protein Expression and Purification 2014, 99, 106-12. 33. Xu, R.; Ayers, B.; Cowburn, D.; Muir, T. W., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proceedings of the National Academy of Sciences of the United States of America 1999, 96 (2), 388-93. 34. Otomo, T.; Ito, N.; Kyogoku, Y.; Yamazaki, T., NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 1999, 38 (49), 16040-4. 35. Brenzel, S.; Cebi, M.; Reiss, P.; Koert, U.; Mootz, H. D., Expanding the scope of protein trans-splicing to fragment ligation of an integral membrane protein: towards modulation of porin-based ion channels by chemical modification. Chembiochem 2009, 10 (6), 983-6. 36. Yu, Y.; Lutz, S., Circular permutation: a different way to engineer enzyme structure and function. Trends in Biotechnology 2011, 29 (1), 18-25. 37. Lo, W. C.; Lyu, P. C., CPSARST: an efficient circular permutation search tool applied to the detection of novel protein structural relationships. Genome Biol 2008, 9 (1), R11. 38. Lindqvist, Y.; Schneider, G., Circular permutations of natural protein sequences: structural evidence. Current Opinion in Structural Biology 1997, 7 (3), 422-7. 39. Vogel, C.; Morea, V., Duplication, divergence and formation of novel protein topologies. Bioessays 2006, 28 (10), 973-8. 40. Qian, Z.; Lutz, S., Improving the catalytic activity of Candida antarctica lipase B by circular permutation. Journal of the American Chemical Society 2005, 127 (39), 13466-7. 41. Todd, A. E.; Orengo, C. A.; Thornton, J. M., Plasticity of enzyme active sites. Trends in Biochemical Sciences 2002, 27 (8), 419-26. 42. Li, L.; Shakhnovich, E. I., Different circular permutations produced different folding nuclei in proteins: a computational study. Journal of Molecular Biology 2001, 306 (1), 121-32. 43. Bulaj, G.; Koehn, R. E.; Goldenberg, D. P., Alteration of the disulfide-coupled folding pathway of BPTI by circular permutation. Protein Science 2004, 13 (5), 1182-96. 44. Chen, J.; Wang, J.; Wang, W., Transition states for folding of circular-permuted proteins. Proteins 2004, 57 (1), 153-71. 45. Cunningham, B. A.; Hemperly, J. J.; Hopp, T. P.; Edelman, G. M., Favin versus concanavalin A: Circularly permuted amino acid sequences. Proceedings of the National Academy of Sciences of the United States of America 1979, 76 (7), 3218-3222. 46. Lo, W. C.; Huang, P. J.; Chang, C. H.; Lyu, P. C., Protein structural similarity search by Ramachandran codes. BMC Bioinformatics 2007, 8, 307. 47. Lo, W. C.; Lee, C. C.; Lee, C. Y.; Lyu, P. C., CPDB: a database of circular permutation in proteins. Nucleic Acids Research 2009, 37 (Database issue), D328-32. 48. Lo, W. C.; Wang, L. F.; Liu, Y. Y.; Dai, T.; Hwang, J. K.; Lyu, P. C., CPred: a web server for predicting viable circular permutations in proteins. Nucleic Acids Research 2012, 40 (Web Server issue), W232-7. 49. Iwakura, M.; Nakamura, T.; Yamane, C.; Maki, K., Systematic circular permutation of an entire protein reveals essential folding elements. Nature Structural Biology 2000, 7 (7), 580-5. 50. Paszkiewicz, K. H.; Sternberg, M. J.; Lappe, M., Prediction of viable circular permutants using a graph theoretic approach. Bioinformatics 2006, 22 (11), 1353-8. 51. Panchenko, A. R.; Madej, T., Structural similarity of loops in protein families: toward the understanding of protein evolution. BMC Evolutionary Biology 2005, 5, 10. 52. Crasto, C. J.; Feng, J., Sequence codes for extended conformation: a neighbor-dependent sequence analysis of loops in proteins. Proteins 2001, 42 (3), 399-413. 53. Lyu, P. C.; Liff, M. I.; Marky, L. A.; Kallenbach, N. R., Side chain contributions to the stability of alpha-helical structure in peptides. Science 1990, 250 (4981), 669-73. 54. Chakrabartty, A.; Kortemme, T.; Baldwin, R. L., Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Science 1994, 3 (5), 843-52. 55. Moreau, R. J.; Schubert, C. R.; Nasr, K. A.; Torok, M.; Miller, J. S.; Kennedy, R. J.; Kemp, D. S., Context-independent, temperature-dependent helical propensities for amino acid residues. Journal of the American Chemical Society 2009, 131 (36), 13107-16. 56. Lo, W. C.; Dai, T.; Liu, Y. Y.; Wang, L. F.; Hwang, J. K.; Lyu, P. C., Deciphering the preference and predicting the viability of circular permutations in proteins. PLoS One 2012, 7 (2), e31791. 57. Iwai, H.; Zuger, S.; Jin, J.; Tam, P. H., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Letters 2006, 580 (7), 1853-8. 58. Wu, H.; Hu, Z.; Liu, X. Q., Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proceedings of the National Academy of Sciences of the United States of America 1998, 95 (16), 9226-31. 59. Aranko, A. S.; Wlodawer, A.; Iwai, H., Nature's recipe for splitting inteins. Protein Eng Des Sel 2014, 27 (8), 263-71. 60. Muralidharan, V.; Muir, T. W., Protein ligation: an enabling technology for the biophysical analysis of proteins. Nature Methods 2006, 3 (6), 429-38. 61. Sun, W.; Yang, J.; Liu, X. Q., Synthetic two-piece and three-piece split inteins for protein trans-splicing. Journal of Biological Chemistry 2004, 279 (34), 35281-6. 62. Aranko, A. S.; Zuger, S.; Buchinger, E.; Iwai, H., In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins. PLoS One 2009, 4 (4), e5185. 63. Ludwig, C.; Schwarzer, D.; Zettler, J.; Garbe, D.; Janning, P.; Czeslik, C.; Mootz, H. D., Semisynthesis of proteins using split inteins. Methods in Enzymology 2009, 462, 77-96. 64. Mootz, H. D., Split inteins as versatile tools for protein semisynthesis. Chembiochem 2009, 10 (16), 2579-89. 65. Lee, Y. T.; Su, T. H.; Lo, W. C.; Lyu, P. C.; Sue, S. C., Circular permutation prediction reveals a viable backbone disconnection for split proteins: an approach in identifying a new functional split intein. PLoS One 2012, 7 (8), e43820. 66. Lee, B.; Richards, F. M., The interpretation of protein structures: estimation of static accessibility. Journal of Molecular Biology 1971, 55 (3), 379-400. 67. Shah, N. H.; Eryilmaz, E.; Cowburn, D.; Muir, T. W., Naturally Split Inteins Assemble through a "Capture and Collapse" Mechanism. Journal of the American Chemical Society 2013. 68. Heinemann, U.; Hahn, M., Circular permutation of polypeptide chains: implications for protein folding and stability. Progress in Biophysics & Molecular Biology 1995, 64 (2-3), 121-43. 69. Oeemig, J. S.; Aranko, A. S.; Djupsjobacka, J.; Heinamaki, K.; Iwai, H., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Letters 2009, 583 (9), 1451-6. 70. Du, Z.; Zheng, Y.; Patterson, M.; Liu, Y.; Wang, C., pK(a) coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate. Journal of the American Chemical Society 2011, 133 (26), 10275-82. 71. Chen, W.; Li, L.; Du, Z.; Liu, J.; Reitter, J. N.; Mills, K. V.; Linhardt, R. J.; Wang, C., Intramolecular disulfide bond between catalytic cysteines in an intein precursor. Journal of the American Chemical Society 2012, 134 (5), 2500-3. 72. Shi, J.; Muir, T. W., Development of a tandem protein trans-splicing system based on native and engineered split inteins. Journal of the American Chemical Society 2005, 127 (17), 6198-206. 73. Metzler, W. J.; Constantine, K. L.; Friedrichs, M. S.; Bell, A. J.; Ernst, E. G.; Lavoie, T. B.; Mueller, L., Characterization of the three-dimensional solution structure of human profilin: 1H, 13C, and 15N NMR assignments and global folding pattern. Biochemistry 1993, 32 (50), 13818-29. 74. Holm, L.; Rosenstrom, P., Dali server: conservation mapping in 3D. Nucleic Acids Research 2010, 38 (Web Server issue), W545-9. 75. Du, Z.; Shemella, P. T.; Liu, Y.; McCallum, S. A.; Pereira, B.; Nayak, S. K.; Belfort, G.; Belfort, M.; Wang, C., Highly conserved histidine plays a dual catalytic role in protein splicing: a pKa shift mechanism. Journal of the American Chemical Society 2009, 131 (32), 11581-9. 76. Du, Z.; Zheng, Y.; Patterson, M.; Liu, Y.; Wang, C., pKa coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate. J Am Chem Soc 2011, 133 (26), 10275-82. 77. Frutos, S.; Goger, M.; Giovani, B.; Cowburn, D.; Muir, T. W., Branched intermediate formation stimulates peptide bond cleavage in protein splicing. Nature Chemical Biology 2010, 6 (7), 527-33. 78. Shah, N. H.; Vila-Perello, M.; Muir, T. W., Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angewandte Chemie, International Edition in English 2011, 50 (29), 6511-5. 79. Englander, S. W.; Sosnick, T. R.; Englander, J. J.; Mayne, L., Mechanisms and uses of hydrogen exchange. Current Opinion in Structural Biology 1996, 6 (1), 18-23. 80. Bjellqvist, B.; Basse, B.; Olsen, E.; Celis, J. E., Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 1994, 15 (3-4), 529-39. 81. Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research 2014, 42 (Web Server issue), W252-8. 82. Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22 (2), 195-201. 83. Guex, N.; Peitsch, M. C.; Schwede, T., Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 2009, 30 Suppl 1, S162-73. 84. Kiefer, F.; Arnold, K.; Kunzli, M.; Bordoli, L.; Schwede, T., The SWISS-MODEL Repository and associated resources. Nucleic Acids Research 2009, 37 (Database issue), D387-92. 85. Fernandez, C.; Adeishvili, K.; Wuthrich, K., Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proceedings of the National Academy of Sciences of the United States of America 2001, 98 (5), 2358-63. 86. Fernandez, C.; Hilty, C.; Wider, G.; Wuthrich, K., Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (21), 13533-7. 87. Huang, C.; Mohanty, S., Challenging the limit: NMR assignment of a 31 kDa helical membrane protein. Journal of the American Chemical Society 2010, 132 (11), 3662-3. 88. Busche, A. E.; Aranko, A. S.; Talebzadeh-Farooji, M.; Bernhard, F.; Dotsch, V.; Iwai, H., Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angewandte Chemie, International Edition in English 2009, 48 (33), 6128-31. 89. Rawlings, A. E.; Bramble, J. P.; Hounslow, A. M.; Williamson, M. P.; Monnington, A. E.; Cooke, D. J.; Staniland, S. S., Ferrous Iron Binding Key to Mms6 Magnetite Biomineralisation: A Mechanistic Study to Understand Magnetite Formation Using pH Titration and NMR Spectroscopy. Chemistry 2016, 22 (23), 7885-94. 90. Amitai, G.; Shemesh, A.; Sitbon, E.; Shklar, M.; Netanely, D.; Venger, I.; Pietrokovski, S., Network analysis of protein structures identifies functional residues. Journal of Molecular Biology 2004, 344 (4), 1135-46. 91. Mori, S.; Abeygunawardana, C.; Johnson, M. O.; van Zijl, P. C., Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. Journal of Magnetic Resonance B 1995, 108 (1), 94-8. 92. Grzesiek, S.; Dobeli, H.; Gentz, R.; Garotta, G.; Labhardt, A. M.; Bax, A., 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-gamma. Biochemistry 1992, 31 (35), 8180-90. 93. Yamazaki, T.; Lee, W.; Arrowsmith, C.; Muhandiram, D.; Kay, L., A suite of triple resonance NMR experiment for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. Journal of the American Chemical Society 1994, 116, 11655–11666. 94. Kay, L. E.; Xu, G. Y.; Yamazaki, T., Enhanced-Sensitivity Triple-Resonance Spectroscopy with Minimal H2O Saturation. Journal of Magnetic Resonance Series A 1994, 109 (1), 129-133. 95. Muhandiram, D. R.; Kay, L. E., Gradient-Enhanced Triple-Resonance 3-Dimensional Nmr Experiments with Improved Sensitivity. Journal of Magnetic Resonance Series B 1994, 103 (3), 203-216. 96. Carlomagno, T.; Maurer, M.; Sattler, M.; Schwendinger, M. G.; Glaser, S. J.; Griesinger, C., PLUSH TACSY: Homonuclear planar TACSY with two-band selective shaped pulses applied to C-alpha,C' transfer and C-beta,C-aromatic correlations. Journal of Biomolecular Nmr 1996, 8 (2), 161-170. 97. Kay, L. E.; Xu, G. Y.; Singer, A. U.; Muhandiram, D. R.; Formankay, J. D., A Gradient-Enhanced Hcch Tocsy Experiment for Recording Side-Chain 1H and 13C Correlations in H2O Samples of Proteins. Journal of Magnetic Resonance Series B 1993, 101 (3), 333-337. 98. Yamazaki, T.; Formankay, J. D.; Kay, L. E., 2-Dimensional Nmr Experiments for Correlating 13CB and 1HD,E Chemical-Shifts of Aromatic Residues in 13C-Labeled Proteins Via Scalar Couplings. Journal of the American Chemical Society 1993, 115 (23), 11054-11055. 99. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A., NMRPipe: a multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR 1995, 6 (3), 277-93. 100. Kneller, T. D. G. a. D. G., SPARKY 3. University of California, San Francisco. 101. Lee, W.; Tonelli, M.; Markley, J. L., NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 2015, 31 (8), 1325-7. 102. Emsley, P.; Cowtan, K., Coot: model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography 2004, 60 (Pt 12 Pt 1), 2126-32. 103. Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography 2010, 66 (Pt 2), 213-21. 104. Laskowski, R. A., MacArthur, M. W., Moss, D. S., Thornton, J. M., PROCHECK - a program to check the stereochemical quality of protein structures. Acta Crystallographica Section D Biological Crystallography 1993, 26, 283-291.
|