帳號:guest(18.118.205.55)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹小鴈
作者(外文):Chan, Hsiao-Yen
論文名稱(中文):CG1458於果蠅老化、粒線體動態變化與細胞死亡扮演之角色探討
論文名稱(外文):Roles of CG1458 in Drosophila Aging, Mitochondrial Dynamics and Cell Death
指導教授(中文):汪宏達
陳俊宏
指導教授(外文):Wang, Horng-Dar
Chen, Chun-Hong
口試委員(中文):羅時成
蔡亭芬
張壯榮
口試委員(外文):Sze-Cheng Lo
Ting-Fen Tsai
Chung-Rung Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:101080601
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:77
中文關鍵詞:鐵硫蛋白粒線體細胞凋亡老化
相關次數:
  • 推薦推薦:0
  • 點閱點閱:362
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
CISD (CDGSH iron-sulfur domain) 是一類鐵硫簇結合結構域,具有高度保留性且廣泛分布於原核和真核生物中,但其生物功能目前尚未被廣泛探討。在人類與老鼠中具有三個CDGSH iron-sulfur domain的蛋白,分別為CISD1、CISD2和CISD3。目前於小鼠的剔除實驗已知,缺乏Cisd1會造成粒線體的氧化能力下降,缺乏Cisd2會導致粒線體缺陷和增加自噬作用(autophagy),進而伴隨早衰現象之發生,Cisd3尚未被探討。
本實驗是經由CDGSH domain之序列比對,發現在果蠅中具有兩個CISD蛋白,分別為CG1458和CG3420。其中CG1458具有單一CDGSH domain,且其序列相較於Cisd2比Cisd1較為相似。本研究發現,隨著年齡增長,伴隨著累積CG1458;此外,當過量表現CG1458會導致果蠅早衰並伴隨行為能力缺陷,反之,於EPG6528 背景果蠅,下調CG1458基因表現可明顯地觀察到延緩果蠅老化,並且改善其行為能力。在研究結果中發現,CG1458蛋白可能主要表現在粒線體上;因此本研究以利用需要大量能量的肌肉組織作為模式。其結果顯示,隨著年齡的增加,因蛋白質降解的衰退導致泛素化蛋白嚴重累積。因此,我們推測過量表現CG1458會導致的爬行能力缺失,可能是由於無法針對受損之蛋白進行適當降解反應所導致。此外,CG1458對於調控粒線體動態變化扮演非常重要之角色;當過量表現CG1458會誘使粒線體趨向於融合;相反地,剔減(Knockdown) CG1458基因表現則促使粒線體型態由原本桿狀改變成非典型的圓型,即呈現裂殖狀態。此外,當表現老鼠的Cisd1和Cisd2蛋白時分別會造成粒線體呈現裂殖和融合狀態,然而表現老鼠的Cisd1或Cisd2於CG1458缺陷的果蠅,其粒線體型態並無顯著之改變。
同時,我們針對此粒線蛋白和細胞凋亡之關聯性進行研究,當下調CG1458表現可抑制Reaper和Grim所誘發的細胞凋亡,然而卻不影響Hid;相反地上調CG1458表現可增強Reaper和Grim誘發之死亡。此外,有研究顯示Drosophila Bruce會抑制Reaper和Grim所誘發的細胞凋亡,然而卻不影響Hid。由於此共通性,我們探討dBruce、CG1458與Reaper之間的交互作用。研究發現,剔減dBruce表現會增強Reaper誘發之細胞凋亡,然而進一步剔減CG1458表現則可減緩細胞凋亡,可能是由於dBruce會透過抑制CG1458進而抑制Reaper所誘發之細胞凋亡。此外,由於pro-apoptotic proteins (RGH)會與 anti-apoptotic proteins (DIAP1)達到穩定平衡,我們進一步探討CG1458與DIAP1之上下游關係;結果顯示,CG1458位於DIAP1之上游調控細胞凋亡。另一方面,本實驗室也著重於Caspase非依存性凋亡途徑之探討,結果顯示,CG1458可能不參與Eiger誘發之Caspase非依存性凋亡途徑。
在本論文研究中,我利用果蠅動物研究CG1458蛋白與老化、粒線體動態改變和細胞凋亡進行相關探討。且提出CG1458為一粒線體蛋白可連接此三領域之重要因子。
CISD (CDGSH iron-sulfur domain) is a subtype of iron and sulfur cluster binding domain, which is highly conserved in prokaryotes and eukaryote; however, the biological functions are largely unclear. In human and mice, there are three CISD proteins, including CISD1, CISD2 and CISD3. In mice, it has been reported that Cisd1-null mice demonstrate a reduced oxidative capacity of mitochondria; Cisd2 knockout mice led to mitochondrial defect and an increased autophagy accompany by premature aging; Cisd3 is unclear yet. In this study, we identified that CG1458 and C3420 are CISD proteins by alignment CDGSH domain sequence in Drosophila. CG1458 contains a CDGSH domain in C-terminal region. The sequence of CG1458 is similar to those of Cisd1 and Cisd2 in mice. In Drosophila, we found that CG1458 is located on or within the mitochondria, and that it increases in abundance with aging. Using a daughterless-GAL4 driver, overexpression of CG1458 fly line was found to reduce the mean lifespan to 41% compared to that of wild-type Drosophila. The hypomorphic allele, EPG6528 mutant increased the mean lifespan of male flies by 29%, compared to that of wild-type flies. CG1458 likely is a mitochondria-associated protein, thus we use muscle tissue which has the highest energy needs and are therefore the most dependent on mitochondrial function as the tissue model. We found that aging causes protein degradation declines and accumulation of polyubiquitinated proteins, thus we proposed that overexpression of CG1458 results in loss of climbing activity due to the dysfunctional proteins cannot be degraded properly. Using ectopically express CG1458 by Mef2-Gal4 in thoracic muscle, we observed that the mitochondria were swollen, enlarged and fusion-like phenotype in flies in which CG1458 was overexpressed. By contrast, flies in which the expression of CG1458 was knocked down using Mef2-Gal4 driven micro-shRNA were found that mitochondrial morphology became fragmented and atypical round-shaped, were called fission-like phenotype. We also showed that expression of mouse Cisd1 caused the fission-like mitochondria; and expression of mouse Cisd2 caused elongated mitochondria. However, there were no significant differences of mitochondrial morphology between knockdown of CG1458 and expression of Cisd1/Cisd2 in knockdown of CG1458 background. These results indicated that CG1458 may be a regulator of mitochondrial dynamics in Drosophila. Beside aging and mitochondrial dynamics, CG1458 plays an important role in cell death way in Drosophila. In our study, we show that CG1458 involve in Rpr- and Grim-induced cell death, but not Hpo-triggered Hid-induced cell death, additionally, CG1458 may be a component to assist Rpr-dependent cell death against dBruce. The balance between of pro-apoptotic proteins and anti-apoptotic proteins is crucial for cell death regulation. These results showed that CG1458 is an upstream gene of DIAP1. On the other hand, we also focus on caspase-independent cell death and found that CG1458 might be involved in this cell death pathway. In summary, CG1458 plays important roles in aging, mitochondrial dynamics and cell death. Yet, the more detail molecular mechanism of CG1458 need to be investigated. Mostly important, we propose a novel concept that CG1458 is a bridge to link these three fields together.
ABSTRACT ........................................................................................................................................................................ II
ACKNOWLEDGEMENT ................................................................................................................................................ III
TABLE OF CONTENTS .................................................................................................................................................. IV
FIGURE LIST ................................................................................................................................................................... VI
TABLE LIST .................................................................................................................................................................... VII
ABBREVIATIONS ........................................................................................................................................................ VIII
INTRODUCTION .............................................................................................................................................................. 1
1.CDGSH iron-sulfur domain-containing (CISD) protein family ...................................................................................... 1
1.1 The CISD-like proteins, CISD1, CISD2 and CISD3 in mammals ....................................................................... 1
1.2 CG1458: a member of the CISD protein family in Drosophila ............................................................................ 3
2.Aging ................................................................................................................................................................................ 3
2.1 Introduction ........................................................................................................................................................... 3
2.2 Overview of muscle aging .................................................................................................................................... 4
2.2.1 Indirect flight muscles (IFMs) ........................................................................................................................... 4
3.Mitochondria .................................................................................................................................................................... 5
3.1 Structure and morphology of mitochondria .......................................................................................................... 5
3.2 Mitochondrial function and characterization ........................................................................................................ 6
3.3 Mitochondrial dynamics: fission and fusion ......................................................................................................... 6
3.4 Mitochondrial dynamics and aging ....................................................................................................................... 7
3.5 Mitochondrial dysfunction and disease ................................................................................................................. 8
4.Cell death ......................................................................................................................................................................... 8
4.1 Regulation of caspase-dependent signaling pathway in Drosophila .................................................................... 8
4.2 Regulation of the caspase-independent signaling pathway ..................................................................................11
4.3 Mitochondria and cell death ................................................................................................................................ 12
5.The aims of this thesis .................................................................................................................................................... 12
MATEIRALS AND METHODS ...................................................................................................................................... 14
Drosophila Genetics and strains ................................................................................................................................ 14
Generation of transgenic flies ................................................................................................................................... 14
Behavioral assay-negative gravitaxis assay .............................................................................................................. 14
Lifespan ..................................................................................................................................................................... 15
Immunoblotting ......................................................................................................................................................... 15
Muscle section and immunostaining ......................................................................................................................... 16
Eye disc and caspase-3 immunostaining ................................................................................................................... 17
V
Fluorescence and scanning electron microscopy .......................................................................................................... 18
Real time quantitative PCR (qRT-PCR) analyses ......................................................................................................... 18
S2 cell culture and immunofluorescence staining ......................................................................................................... 19
Cell culture .................................................................................................................................................................... 19
Immunofluorescence staining ....................................................................................................................................... 19
Cloning and construction of the recombinant plasmid ................................................................................................. 19
Statistical analysis ......................................................................................................................................................... 20
RESULTS .......................................................................................................................................................................... 21
The CG1458 protein possesses a unique CDGSH iron-sulfur cluster domain ............................................................. 21
CG1458 likely is a mitochondria-associated protein .................................................................................................... 21
Delay lifespan and preferable climbing performance in knockdown and EPG6528 mutant strains ................................ 22
CG1458 protein abundance with age ............................................................................................................................ 24
Progressive accumulation of polyubiquitinated protein aggregates is associated with CG1458 during aging ............ 24
Genetic defects in the CG1458 protein regulate mitochondrial fission and fusion and lead to severely altered mitochondrial shape ...................................................................................................................................................... 25
Expression of the mouse Cisd1 and Cisd2 gene in Drosophila muscle lead to an abnormal mitochondrial morphology ................................................................................................................................................................... 26
CG1458 interacts with the Drosophila pro-apoptotic protein Reaper and Grim, but not Hid ...................................... 28
Double knockdown dBruce with CG1458 enhances Reaper-induced the cell death .................................................... 29
CG1458 is upstream of Drosophila inhibitor of apoptosis protein 1 in cell death pathway. ........................................ 31
CG1458 is not involved in the Eiger-triggered JNK cell death pathway ...................................................................... 31
DISCUSSION AND CONCLUSION ............................................................................................................................... 34
REFERENCES.................................................................................................................................................................. 39
FIGURES .......................................................................................................................................................................... 48
TABLES ............................................................................................................................................................................ 69
SUPPLEMENTARY ......................................................................................................................................................... 73
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.
Amr, S., Heisey, C., Zhang, M., Xia, X.J., Shows, K.H., Ajlouni, K., Pandya, A., Satin, L.S., El-Shanti, H., and Shiang, R. (2007). A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2. American journal of human genetics 81, 673-683.
Baehrecke, E.H. (2002). How death shapes life during development. Nat Rev Mol Cell Bio 3, 779-787.
Bai, H., Kang, P., Hernandez, A.M., and Tatar, M. (2013). Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS genetics 9, e1003941.
Baumgartner, R.N., Koehler KM , Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD. (1998). Epidemiology of sarcopenia among the elderly in New Mexico. American journal of epidemiology 147, 763.
Benedict, C.A., Norris, P.S., and Ware, C.F. (2002). To kill or be killed: viral evasion of apoptosis. Nat Immunol 3, 1013-1018.
Bieganski, R.M., and Yarmush, M.L. (2011). Novel ligands that target the mitochondrial membrane protein mitoNEET. Journal of molecular graphics & modelling 29, 965-973.
Chen, H., and Chan, D.C. (2004). Mitochondrial dynamics in mammals. Current topics in developmental biology 59, 119-144.
Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of cell biology 160, 189-200.
Chen, P., Nordstrom, W., Gish, B., and Abrams, J.M. (1996). grim, a novel cell death gene in Drosophila. Genes & development 10, 1773-1782.
Chen, P., Rodriguez, A., Erskine, R., Thach, T., and Abrams, J.M. (1998). Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila. Developmental biology 201, 202-216.
40
Chen, Y.F., Kao, C.H., Chen, Y.T., Wang, C.H., Wu, C.Y., Tsai, C.Y., Liu, F.C., Yang, C.W., Wei, Y.H., Hsu, M.T., et al. (2009). Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes & development 23, 1183-1194.
Chen, Y.F., Wu, C.Y., Kirby, R., Kao, C.H., and Tsai, T.F. (2010). A role for the CISD2 gene in lifespan control and human disease. Ann Ny Acad Sci 1201, 58-64.
Chipuk, J.E., and Green, D.R. (2005). Do inducers of apoptosis trigger caspase-independent cell death? Nat Rev Mol Cell Bio 6, 268-275.
Christich, A., Kauppila, S., Chen, P., Sogame, N., Ho, S.I., and Abrams, J.M. (2002). The damage-responsive Drosophila gene sickle encodes a novel IAP binding protein similar to but distinct from reaper, grim, and hid. Current biology : CB 12, 137-140.
Cipolat, S., Martins de Brito, O., Dal Zilio, B., and Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proceedings of the National Academy of Sciences of the United States of America 101, 15927-15932.
Clem, R.J., Robson, M., and Miller, L.K. (1994). Influence of Infection Route on the Infectivity of Baculovirus Mutants Lacking the Apoptosis-Inhibiting Gene P35 and the Adjacent Gene P94. J Virol 68, 6759-6762.
Colca, J.R., McDonald, W.G., Waldon, D.J., Leone, J.W., Lull, J.M., Bannow, C.A., Lund, E.T., and Mathews, W.R. (2004). Identification of a novel mitochondrial protein ("mitoNEET") cross-linked specifically by a thiazolidinedione photoprobe. Am J Physiol-Endoc M 286, E252-E260.
Conlan, A.R., Axelrod, H.L., Cohen, A.E., Abresch, E.C., Zuris, J., Yee, D., Nechushtai, R., Jennings, P.A., and Paddock, M.L. (2009). Crystal structure of Miner1: The redox-active 2Fe-2S protein causative in Wolfram Syndrome 2. Journal of molecular biology 392, 143-153.
CROSSLEY, A.C. (1978). The morphology and development of the Drosophila muscular system. . In Genetics and Biology of Drosophila (eds M Ashburner and T R F Wright)
2b, 560.
Cruz-Jentoft, A.J., Landi, F., Topinkova, E., and Michel, J.P. (2010). Understanding sarcopenia as a geriatric syndrome. Current opinion in clinical nutrition and metabolic care 13, 1-7.
Degterev, A., Boyce, M., and Yuan, J. (2003). A decade of caspases. Oncogene 22, 8543-8567.
Demontis, F., and Perrimon, N. (2010). FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide
41
proteostasis during aging. Cell 143, 813-825.
Demontis, F., Piccirillo, R., Goldberg, A.L., and Perrimon, N. (2013). Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis Model Mech 6, 1339-1352.
Deng, H., Dodson, M.W., Huang, H., and Guo, M. (2008). The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 105, 14503-14508.
Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nature reviews Molecular cell biology 8, 870-879.
Deveraux, Q.L., and Reed, J.C. (1999). IAP family proteins--suppressors of apoptosis. Genes & development 13, 239-252.
Deveraux, Q.L., Takahashi, R., Salvesen, G.S., and Reed, J.C. (1997). X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300-304.
Dickinson, M. (2006). Insect flight. Curr Biol 16, R314.
Dorstyn, L., Colussi, P.A., Quinn, L.M., Richardson, H., and Kumar, S. (1999a). DRONC, an ecdysone-inducible Drosophila caspase. Proceedings of the National Academy of Sciences of the United States of America 96, 4307-4312.
Dorstyn, L., Read, S.H., Quinn, L.M., Richardson, H., and Kumar, S. (1999b). DECAY, a novel Drosophila caspase related to mammalian caspase-3 and caspase-7. The Journal of biological chemistry 274, 30778-30783.
Doumanis, J., Quinn, L., Richardson, H., and Kumar, S. (2001). STRICA, a novel Drosophila melanogaster caspase with an unusual serine/threonine-rich prodomain, interacts with DIAP1 and DIAP2. Cell Death Differ 8, 387-394.
Fraser, A.G., and Evan, G.I. (1997). Identification of a Drosophila melanogaster ICE/CED-3-related protease, drICE. The EMBO journal 16, 2805-2813.
Galluzzi, L., Maiuri, M.C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L., and Kroemer, G. (2007). Cell death modalities: classification and pathophysiological implications. Cell death and differentiation 14, 1237-1243.
Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J., and Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature cell biology 12, 119-131.
Green, D.R., and Evan, G.I. (2002). A matter of life and death. Cancer Cell 1, 19-30.
42
Grether, M.E., Abrams, J.M., Agapite, J., White, K., and Steller, H. (1995). The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes & development 9, 1694-1708.
Grotewiel, M.S., Martin, I., Bhandari, P., and Cook-Wiens, E. (2005). Functional senescence in Drosophila melanogaster. Ageing research reviews 4, 372-397.
Hagenbuchner, J., and Ausserlechner, M.J. (2013). Mitochondria and FOXO3: breath or die. Frontiers in physiology 4, 147.
Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70.
Harvey, N.L., Daish, T., Mills, K., Dorstyn, L., Quinn, L.M., Read, S.H., Richardson, H., and Kumar, S. (2001). Characterization of the Drosophila caspase, DAMM. The Journal of biological chemistry 276, 25342-25350.
Hay, B.A., and Guo, M. (2006). Caspase-dependent cell death in Drosophila. Annual review of cell and developmental biology 22, 623-650.
Hay, B.A., Huh, J.R., and Guo, M. (2004). The genetics of cell death: approaches, insights and opportunities in Drosophila. Nature reviews Genetics 5, 911-922.
Hoppins, S. (2014). The regulation of mitochondrial dynamics. Current opinion in cell biology 29C, 46-52.
Hotchkiss, R.S., Strasser, A., McDunn, J.E., and Swanson, P.E. (2009). Cell death. The New England journal of medicine 361, 1570-1583.
Igaki, T., Kanda, H., Yamamoto-Goto, Y., Kanuka, H., Kuranaga, E., Aigaki, T., and Miura, M. (2002). Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. The EMBO journal 21, 3009-3018.
Inagaki, H.K., Kamikouchi, A., and Ito, K. (2009). Methods for quantifying simple gravity sensing in Drosophila melanogaster. Nature Protocols 5, 20-25.
Ishihara, N., Eura, Y., and Mihara, K. (2004). Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. Journal of cell science 117, 6535-6546.
Jacobson, M.D., Weil, M., and Raff, M.C. (1997). Programmed cell death in animal development. Cell 88, 347-354.
Janssen, I., Heymsfield, S.B., and Ross, R. (2002). Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. Journal of the American Geriatrics Society 50, 889-896.
43
Jones, M.A., , S.A., Aerial Ferebee, , P.H., , J.A.R., , M.F.M., , A.G.D., , C.A.K., , J.M.W., , R.S., , S.H.E., et al. (2014). Genetic studies in Drosophila and humans support a model for the concerted function of CISD2, PPT1 and CLN3 in disease. Biology Open 3, 10.
Kanda, H., Igaki, T., Okano, H., and Miura, M. (2011). Conserved metabolic energy production pathways govern Eiger/TNF-induced nonapoptotic cell death. Proceedings of the National Academy of Sciences of the United States of America 108, 18977-18982.
Kaniuk, N.A., Kiraly, M., Bates, H., Vranic, M., Volchuk, A., and Brumell, J.H. (2007). Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56, 930-939.
Karbowski, M., and Youle, R.J. (2003). Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10, 870-880.
Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 26, 239-257.
Kim, J.A., Wei, Y., and Sowers, J.R. (2008). Role of mitochondrial dysfunction in insulin resistance. Circulation research 102, 401-414.
Koshiba, T., Detmer, S.A., Kaiser, J.T., Chen, H., McCaffery, J.M., and Chan, D.C. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858-862.
Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., El-Deiry, W.S., Golstein, P., Green, D.R., et al. (2009). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell death and differentiation 16, 3-11.
Kumar, S., and Doumanis, J. (2000). The fly caspases. Cell Death Differ 7, 1039-1044.
Lawen, A. (2003). Apoptosis-an introduction. BioEssays : news and reviews in molecular, cellular and developmental biology 25, 888-896.
Lawrence, P.A. (1982). Cell lineage of the thoracic muscles of Drosophila. Cell 29, 493-503.
Lee, H.C., and Wei, Y.H. (2012). Mitochondria and aging. Advances in experimental medicine and biology 942, 311-327.
Legros, F., Lombes, A., Frachon, P., and Rojo, M. (2002). Mitochondrial fusion in human cells is efficient, requires the
44
inner membrane potential, and is mediated by mitofusins. Molecular biology of the cell 13, 4343-4354.
Lepez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The Hallmarks of Aging. Cell 153, 1194-1217.
Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.
Lin, J.Z., Zhang, L.M., Lai, S.M., and Ye, K.Q. (2011). Structure and Molecular Evolution of CDGSH Iron-Sulfur Domains. PloS one 6.
Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157.
Locksley, R.M., Killeen, N., and Lenardo, M.J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501.
Majno, G., and Joris, I. (1995). Apoptosis, oncosis, and necrosis. An overview of cell death. The American journal of pathology 146, 3-15.
Martinez, V.G., Javadi, C.S., Ngo, E., Ngo, L., Lagow, R.D., and Zhang, B. (2007). Age-related changes in climbing behavior and neural circuit physiology in Drosophila. Developmental neurobiology 67, 778-791.
Md Arop, M., Abdullah, A., Abdulrahman, S., and Mohdjani, M. (2000). Evaluation of the school supplementary feeding program in peninsular malaysia. Malaysian journal of nutrition 6, 1-15.
MILLER, A. (1950). The internal anatomy and histology of the imago of Drosophila melanogaster. In The Biology of Drosophila (ed M Demerec), 534.
Moreno, E., Yan, M., and Basler, K. (2002). Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Current biology : CB 12, 1263-1268.
Olichon, A., Emorine, L.J., Descoins, E., Pelloquin, L., Brichese, L., Gas, N., Guillou, E., Delettre, C., Valette, A., Hamel, C.P., et al. (2002). The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS letters 523, 171-176.
Opferman, J.T., and Korsmeyer, S.J. (2003). Apoptosis in the development and maintenance of the immune system. Nat Immunol 4, 410-415.
45
Orme, M., and Meier, P. (2009). Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis : an international journal on programmed cell death 14, 950-960.
Paddock, M.L., Wiley, S.E., Axelrod, H.L., Cohen, A.E., Roy, M., Abresch, E.C., Capraro, D., Murphy, A.N., Nechushtai, R., Dixon, J.E., et al. (2007). MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. Proceedings of the National Academy of Sciences of the United States of America 104, 14342-14347.
Peck, B., Ferber, E.C., and Schulze, A. (2013). Antagonism between FOXO and MYC Regulates Cellular Powerhouse. Frontiers in oncology 3, 96.
Perier, C., Bove, J., and Vila, M. (2012). Mitochondria and Programmed Cell Death in Parkinson's Disease: Apoptosis and Beyond. Antioxid Redox Sign 16, 883-895.
Quinn, L., Coombe, M., Mills, K., Daish, T., Colussi, P., Kumar, S., and Richardson, H. (2003). Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. The EMBO journal 22, 3568-3579.
Reznick, R.M., Zong, H., Li, J., Morino, K., Moore, I.K., Yu, H.J., Liu, Z.X., Dong, J., Mustard, K.J., Hawley, S.A., et al. (2007). Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell metabolism 5, 151-156.
Sandu, C., Ryoo, H.D., and Steller, H. (2010). Drosophila IAP antagonists form multimeric complexes to promote cell death. The Journal of cell biology 190, 1039-1052.
Seo, A.Y., Joseph, A.M., Dutta, D., Hwang, J.C.Y., Aris, J.P., and Leeuwenburgh, C. (2010). New insights into the role of mitochondria in aging: mitochondrial dynamics and more. Journal of cell science 123, 2533-2542.
Sesaki, H., and Jensen, R.E. (1999). Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. The Journal of cell biology 147, 699-706.
Sink, H. (2005). Muscle development in Drosophila Eurekahcom and Springer Science+business Media Books
Smirnova, E., Griparic, L., Shurland, D.L., and van der Bliek, A.M. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Molecular biology of the cell 12, 2245-2256.
Sohn, Y.S., Tamir, S., Song, L.H., Michaeli, D., Matouk, I., Conlan, A.R., Harir, Y., Holt, S.H., Shulaev, V., Paddock, M.L., et al. (2013). NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proceedings of the National Academy of Sciences of the United States of America 110, 14676-14681.
46
Song, Z., McCall, K., and Steller, H. (1997). DCP-1, a Drosophila cell death protease essential for development. Science 275, 536-540.
Steller, H. (1995). Mechanisms and genes of cellular suicide. Science 267, 1445-1449.
Tenev, A, Z., R, W., A, P., and P, M. (2002). Jafrac2 is an IAP antagonist that promotes cell death by liberating Dronc from DIAP1. EMBO 21.
Terman, A., Kurz, T., Navratil, M., Arriaga, E.A., and Brunk, U.T. (2010). Mitochondrial Turnover and Aging of Long-Lived Postmitotic Cells: The Mitochondrial-Lysosomal Axis Theory of Aging. Antioxid Redox Sign 12, 503-535.
Thompson, C.B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456-1462.
Vernooy, S.Y., Chow, V., Su, J., Verbrugghe, K., Yang, J., Cole, S., Olson, M.R., and Hay, B.A. (2002). Drosophila Bruce can potently suppress Rpr- and Grim-dependent but not hid-dependent cell death. Current Biology 12, 1164-1168.
Vernooy, S.Y., Copeland, J., Ghaboosi, N., Griffin, E.E., Yoo, S.J., and Hay, B.A. (2000). Cell death regulation in Drosophila: conservation of mechanism and unique insights. The Journal of cell biology 150, F69-76.
Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R.L., Kim, J., May, J., Tocilescu, M.A., Liu, W., Ko, H.S., et al. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences of the United States of America 107, 378-383.
Wang, C.H., Chen, Y.F., Wu, C.Y., Wu, P.C., Huang, Y.L., Kao, C.H., Lin, C.H., Kao, L.S., Tsai, T.F., and Wei, Y.H. (2014). Cisd2 modulates the differentiation and functioning of adipocytes by regulating intracellular Ca2+ homeostasis. Human molecular genetics.
White, K., Grether, M.E., Abrams, J.M., Young, L., Farrell, K., and Steller, H. (1994). Genetic control of programmed cell death in Drosophila. Science 264, 677-683.
Wildonger, J., Sosinsky, A., Honig, B., and Mann, R.S. (2005). Lozenge directly activates argos and klumpfuss to regulate programmed cell death. Genes & development 19, 1034-1039.
Wiley, S.E., Murphy, A.N., Ross, S.A., van der Geer, P., and Dixon, J.E. (2007a). MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proceedings of the National Academy of Sciences of the United States of America 104, 5318-5323.
Wiley, S.E., Paddock, M.L., Abresch, E.C., Gross, L., van der Geer, P., Nechushtai, R., Murphy, A.N., Jennings, P.A., and Dixon, J.E. (2007b). The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S
47
cluster. The Journal of biological chemistry 282, 23745-23749.
Wu, C.Y., Chen, Y.F., Wang, C.H., Kao, C.H., Zhuang, H.W., Chen, C.C., Chen, L.K., Kirby, R., Wei, Y.H., Tsai, S.F., et al. (2012). A persistent level of Cisd2 extends healthy lifespan and delays aging in mice. Human molecular genetics 21, 3956-3968.
Yoon, Y., Krueger, E.W., Oswald, B.J., and McNiven, M.A. (2003). The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23, 5409-5420.
Yuan, J., and Yankner, B.A. (2000). Apoptosis in the nervous system. Nature 407, 802-809.
Zou, H., Henzel, W.J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *