帳號:guest(13.59.79.207)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳冠豪
作者(外文):Chen, Kuan Hao
論文名稱(中文):由分子動力模擬設計抗菌及抗癌胜肽之研究
論文名稱(外文):From Molecular Dynamic simulation to antimicrobial and anticancer peptide design
指導教授(中文):程家維
口試委員(中文):龍鳳娣
陳金榜
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:101080594
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:49
中文關鍵詞:抗菌胜肽抗癌胜肽分子動力模擬
外文關鍵詞:Antimicrobial peptideAnticancer peptideMolecular Dynamic simulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
抗菌胜肽在各種物種的天然免疫系統中扮演重要的角色。雖然抗菌胜肽已經被廣泛性的研究而且越來越有潛力成為抵抗各種疾病的抗生素替代品,但是抗菌胜肽在癌症治療的應用上,不管是獨立用藥或是配合傳統抗癌藥物的給藥,都仍需再做進一步的設計和研究。近期,我們實驗室建立了POPC膜的分子動力(MD-POPC)模擬系統,其重現了抗菌胜肽在NMR上插入膜內深度的相對結果。另外,我們也發展了POPC/POPG膜的拉伸分子動力 (SMD-POPC/POPG)模擬系統,並藉由依序列相同排列順序不同而設計出的胜肽WLK和其同分異構物,來進行實驗和模擬系統的驗證。從生物活性實驗的結果,我們可以發現在所以WLK的同分異構物中,WLK11具有最強的抑菌和抗癌活性並擁有最低的溶血度。而利用圓二色光譜(CD)和二維NMR光譜的物性實驗,我們發現WLK11的抑菌能力與對鹽的耐受性是和胜肽包埋在膜裡的深淺程度有關。最後,從分子動力(MD)的模擬結果顯示出胜肽與膜之間的非鍵結性作用力(Non-bonded energy)與抑菌和抗癌能力有正相關性。由抑菌和抗癌的實驗結果可以來驗證我們的拉伸分子動力(SMD)模擬模式的可行性,並提供給我們更深入的觀點來探討胜肽活性和各種物理性質的關係。因此,我們的研究將分子動力(MD)模擬發展成一項利器,開啟一條新的途徑來幫助我們預測分析抗菌胜肽和抗癌胜肽。
Antimicrobial peptides (AMPs) play important roles in the innate immune system of many organisms. Although AMPs have been essentially studied and received increasing attention as potential alternatives against infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been considered to be a therapeutic strategy to explore. Recently, We have developed a MD-POPC simulation model to examine the relationship of inserting depth as well as energy statistical calculation between membranes and peptides corresponding to the NMR results. Furthermore, we also proposed a SMD-POPC/POPG simulation model to perform with antimicrobial peptide, WLK and its’ isomers, which design is dependent on the characteristics of helicity and amphipathicity. In bioactivity experiment experiments, the assays of the WLK analogues were showed that WLK11 possess strong antimicrobial, anticancer and low hemolytic activity. Additionally, the biophysical experiments, including circular dichroism and two-dimensional NMR, were used to demonstrate that the stronger antibacterial and salt resistance of WLK11 could be due to the membrane immersion depth. The results of MD simulations demonstrate that the MD statistical calculations of non-bonded energy are positively correlated to the MIC value and cancer cytotoxicity. The assay of antimicrobial and anticancer ability can verify our SMD simulation systems and provide us the in-depth view between the activity and several biophysical properties. To sum up, our work opens a new avenue to develop a potent tool to help us predict not only novel potential AMPs but promising ACPs.
中文摘要 2
Abstract 3
Acknowledgement 4
List of Tables 7
List of Figures 8
Chapter 1 Introduction 10
1.1. Antimicrobial Peptides – Promising Alternatives to Conventional Antibiotics 10
1.2. The characteristics of antimicrobial peptides 11
1.3. Rational design for antimicrobial peptide WLK. 12
1.4. Leading antimicrobial peptides into anticancer therapy 12
1.5. The aim of this research 13
Chapter 2 Materials and Methods 15
2.1 Peptide preparation 15
2.2 Bacteria culture 15
2.3 Antimicrobial activity 16
2.4 Hemolytic activity 17
2.5 MD simulation 17
2.5.1 Initial conformers of AMPs 17
2.5.2 Building the initial lipid system 18
2.5.3 The model of steered molecular dynamics in the MD-POPG simulations 18
2.5.4 Non-bounded energy 19
2.5.5 Insertion area and depth 19
2.6 Nuclear magnetic resonance (NMR) Spectroscopy 20
2.7 Cell culture 21
2.8 Cell toxicity 22
Chapter 3 Results 23
3.1 Antimicrobial activities in MIC assays 23
3.2 SMD simulation in POPC/POPG model for WLK and its other 4 isomers 23
3.2.1 The statistical result of SASAs during the insertion of peptides 24
3.2.2 The statistical result of heavy atoms between peptides and lipids 24
3.2.3 The statistical result of non-bonded energies in the SMD model 24
3.4 Anticancer activity 25
3.5 Hemolytic activity assays 26
3.6 Structure calculation and Description 26
3.7 Orientation in DPC via PRE studies 26
Chapter 4 Discussion 28
Appendix Tables and Figures 31
References 47
1. Wright, G.D., Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev, 2005. 57(10): p. 1451-70.
2. El-Sersy, N.A., et al., Antibacterial and anticancer activity of epsilon-poly-L-lysine (epsilon-PL) produced by a marine Bacillus subtilis sp. J Basic Microbiol, 2012. 52(5): p. 513-22.
3. Rodrigues, E.G., et al., Effective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesin. Neoplasia, 2008. 10(1): p. 61-8.
4. Boman, H.G., Peptide antibiotics and their role in innate immunity. Annu Rev Immunol, 1995. 13: p. 61-92.
5. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature, 2002. 415(6870): p. 389-95.
6. Kai-Larsen, Y. and B. Agerberth, The role of the multifunctional peptide LL-37 in host defense. Front Biosci, 2008. 13: p. 3760-7.
7. Marr, A.K., W.J. Gooderham, and R.E. Hancock, Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol, 2006. 6(5): p. 468-72.
8. Mygind, P.H., et al., Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature, 2005. 437(7061): p. 975-80.
9. van 't Hof, W., et al., Antimicrobial peptides: properties and applicability. Biol Chem, 2001. 382(4): p. 597-619.
10. Fernebro, J., Fighting bacterial infections-future treatment options. Drug Resist Updat, 2011. 14(2): p. 125-39.
11. Huang, Y., et al., Image analysis of liver collagen using sirius red is more accurate and correlates better with serum fibrosis markers than trichrome. Liver Int, 2013. 33(8): p. 1249-56.
12. Schneider, T., et al., Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science, 2010. 328(5982): p. 1168-72.
13. Hancock, R.E. and H.G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 2006. 24(12): p. 1551-7.
14. Fox, J.L., Antimicrobial peptides stage a comeback. Nat Biotechnol, 2013. 31(5): p. 379-82.
15. Garlapati, S., et al., Enhanced immune responses and protection by vaccination with respiratory syncytial virus fusion protein formulated with CpG oligodeoxynucleotide and innate defense regulator peptide in polyphosphazene microparticles. Vaccine, 2012. 30(35): p. 5206-14.
16. Selsted, M.E., et al., Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem, 1993. 268(9): p. 6641-8.
17. Schnapp, D., C.J. Reid, and A. Harris, Localization of expression of human beta defensin-1 in the pancreas and kidney. J Pathol, 1998. 186(1): p. 99-103.
18. Mendez, E., et al., Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur J Biochem, 1990. 194(2): p. 533-9.
19. Brown, K.L. and R.E. Hancock, Cationic host defense (antimicrobial) peptides. Curr Opin Immunol, 2006. 18(1): p. 24-30.
20. Nguyen, L.T., E.F. Haney, and H.J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 2011. 29(9): p. 464-72.
21. Hancock, R.E., Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis, 2001. 1(3): p. 156-64.
22. Oren, Z. and Y. Shai, Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers, 1998. 47(6): p. 451-63.
23. Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol, 2005. 3(3): p. 238-50.
24. Sengupta, D., et al., Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta, 2008. 1778(10): p. 2308-17.
25. Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta, 1999. 1462(1-2): p. 55-70.
26. Matsuzaki, K., et al., An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry, 1996. 35(35): p. 11361-8.
27. Shai, Y., Mode of action of membrane active antimicrobial peptides. Biopolymers, 2002. 66(4): p. 236-48.
28. Bechinger, B. and K. Lohner, Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta, 2006. 1758(9): p. 1529-39.
29. Reddy, K.V., R.D. Yedery, and C. Aranha, Antimicrobial peptides: premises and promises. Int J Antimicrob Agents, 2004. 24(6): p. 536-47.
30. Teixeira, V., M.J. Feio, and M. Bastos, Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res, 2012. 51(2): p. 149-77.
31. Seo, M.D., et al., Antimicrobial peptides for therapeutic applications: a review. Molecules, 2012. 17(10): p. 12276-86.
32. Utsugi, T., et al., Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res, 1991. 51(11): p. 3062-6.
33. Giuliani A, P.G., Nicoletto SF, Antimicrobial peptides: an overview of a promising class of therapeutics. Central European Journal of Biology, 2007. 2(1): p. 1-33.
34. Raz, A., et al., Distribution of membrane anionic sites on B16 melanoma variants with differing lung colonising potential. Nature, 1980. 284(5754): p. 363-4.
35. Hoskin, D.W. and A. Ramamoorthy, Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta, 2008. 1778(2): p. 357-75.
36. Schweizer, F., Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol, 2009. 625(1-3): p. 190-4.
37. Mader, J.S. and D.W. Hoskin, Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs, 2006. 15(8): p. 933-46.
38. Papo, N., et al., Inhibition of tumor growth and elimination of multiple metastases in human prostate and breast xenografts by systemic inoculation of a host defense-like lytic peptide. Cancer Res, 2006. 66(10): p. 5371-8.
39. Papo, N., et al., A novel lytic peptide composed of DL-amino acids selectively kills cancer cells in culture and in mice. J Biol Chem, 2003. 278(23): p. 21018-23.
40. Ting, C.H., et al., The mechanisms by which pardaxin, a natural cationic antimicrobial peptide, targets the endoplasmic reticulum and induces c-FOS. Biomaterials, 2014. 35(11): p. 3627-40.
41. Chen, C., et al., Molecular mechanisms of anticancer action and cell selectivity of short alpha-helical peptides. Biomaterials, 2014. 35(5): p. 1552-61.
42. Pouny, Y. and Y. Shai, Interaction of D-amino acid incorporated analogues of pardaxin with membranes. Biochemistry, 1992. 31(39): p. 9482-90.
43. Santamaria, C., et al., Antimicrobial activity of myotoxic phospholipases A2 from crotalid snake venoms and synthetic peptide variants derived from their C-terminal region. Toxicon, 2005. 45(7): p. 807-15.
44. Yu, H.Y., et al., Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities. Chembiochem, 2010. 11(16): p. 2273-82.
45. Moore, A.J., D.A. Devine, and M.C. Bibby, Preliminary experimental anticancer activity of cecropins. Pept Res, 1994. 7(5): p. 265-9.
46. Phillips, J.C., et al., Scalable molecular dynamics with NAMD. J Comput Chem, 2005. 26(16): p. 1781-802.
47. MacKerell, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B, 1998. 102(18): p. 3586-616.
48. Klauda, J.B., et al., Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B, 2010. 114(23): p. 7830-43.
49. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A, 1985. 31(3): p. 1695-1697.
50. Tsai, C.W., et al., Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J Mol Biol, 2009. 392(3): p. 837-54.
51. Isralewitz, B., M. Gao, and K. Schulten, Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol, 2001. 11(2): p. 224-30.
52. Andersen, H.C., Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics Calculations. Journal of Computational Physics, 1983. 52(1): p. 24-34.
53. Miyamoto, S. and P.A. Kollman, Settle - an Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models. Journal of Computational Chemistry, 1992. 13(8): p. 952-962.
54. Lee, B. and F.M. Richards, The interpretation of protein structures: estimation of static accessibility. J Mol Biol, 1971. 55(3): p. 379-400.
55. Song, J., et al., Design of an acid-activated antimicrobial peptide for tumor therapy. Mol Pharm, 2013. 10(8): p. 2934-41.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *