|
1. Wright, G.D., Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev, 2005. 57(10): p. 1451-70. 2. El-Sersy, N.A., et al., Antibacterial and anticancer activity of epsilon-poly-L-lysine (epsilon-PL) produced by a marine Bacillus subtilis sp. J Basic Microbiol, 2012. 52(5): p. 513-22. 3. Rodrigues, E.G., et al., Effective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesin. Neoplasia, 2008. 10(1): p. 61-8. 4. Boman, H.G., Peptide antibiotics and their role in innate immunity. Annu Rev Immunol, 1995. 13: p. 61-92. 5. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature, 2002. 415(6870): p. 389-95. 6. Kai-Larsen, Y. and B. Agerberth, The role of the multifunctional peptide LL-37 in host defense. Front Biosci, 2008. 13: p. 3760-7. 7. Marr, A.K., W.J. Gooderham, and R.E. Hancock, Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol, 2006. 6(5): p. 468-72. 8. Mygind, P.H., et al., Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature, 2005. 437(7061): p. 975-80. 9. van 't Hof, W., et al., Antimicrobial peptides: properties and applicability. Biol Chem, 2001. 382(4): p. 597-619. 10. Fernebro, J., Fighting bacterial infections-future treatment options. Drug Resist Updat, 2011. 14(2): p. 125-39. 11. Huang, Y., et al., Image analysis of liver collagen using sirius red is more accurate and correlates better with serum fibrosis markers than trichrome. Liver Int, 2013. 33(8): p. 1249-56. 12. Schneider, T., et al., Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science, 2010. 328(5982): p. 1168-72. 13. Hancock, R.E. and H.G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 2006. 24(12): p. 1551-7. 14. Fox, J.L., Antimicrobial peptides stage a comeback. Nat Biotechnol, 2013. 31(5): p. 379-82. 15. Garlapati, S., et al., Enhanced immune responses and protection by vaccination with respiratory syncytial virus fusion protein formulated with CpG oligodeoxynucleotide and innate defense regulator peptide in polyphosphazene microparticles. Vaccine, 2012. 30(35): p. 5206-14. 16. Selsted, M.E., et al., Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem, 1993. 268(9): p. 6641-8. 17. Schnapp, D., C.J. Reid, and A. Harris, Localization of expression of human beta defensin-1 in the pancreas and kidney. J Pathol, 1998. 186(1): p. 99-103. 18. Mendez, E., et al., Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur J Biochem, 1990. 194(2): p. 533-9. 19. Brown, K.L. and R.E. Hancock, Cationic host defense (antimicrobial) peptides. Curr Opin Immunol, 2006. 18(1): p. 24-30. 20. Nguyen, L.T., E.F. Haney, and H.J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 2011. 29(9): p. 464-72. 21. Hancock, R.E., Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis, 2001. 1(3): p. 156-64. 22. Oren, Z. and Y. Shai, Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers, 1998. 47(6): p. 451-63. 23. Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol, 2005. 3(3): p. 238-50. 24. Sengupta, D., et al., Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta, 2008. 1778(10): p. 2308-17. 25. Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta, 1999. 1462(1-2): p. 55-70. 26. Matsuzaki, K., et al., An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry, 1996. 35(35): p. 11361-8. 27. Shai, Y., Mode of action of membrane active antimicrobial peptides. Biopolymers, 2002. 66(4): p. 236-48. 28. Bechinger, B. and K. Lohner, Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta, 2006. 1758(9): p. 1529-39. 29. Reddy, K.V., R.D. Yedery, and C. Aranha, Antimicrobial peptides: premises and promises. Int J Antimicrob Agents, 2004. 24(6): p. 536-47. 30. Teixeira, V., M.J. Feio, and M. Bastos, Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res, 2012. 51(2): p. 149-77. 31. Seo, M.D., et al., Antimicrobial peptides for therapeutic applications: a review. Molecules, 2012. 17(10): p. 12276-86. 32. Utsugi, T., et al., Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res, 1991. 51(11): p. 3062-6. 33. Giuliani A, P.G., Nicoletto SF, Antimicrobial peptides: an overview of a promising class of therapeutics. Central European Journal of Biology, 2007. 2(1): p. 1-33. 34. Raz, A., et al., Distribution of membrane anionic sites on B16 melanoma variants with differing lung colonising potential. Nature, 1980. 284(5754): p. 363-4. 35. Hoskin, D.W. and A. Ramamoorthy, Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta, 2008. 1778(2): p. 357-75. 36. Schweizer, F., Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol, 2009. 625(1-3): p. 190-4. 37. Mader, J.S. and D.W. Hoskin, Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs, 2006. 15(8): p. 933-46. 38. Papo, N., et al., Inhibition of tumor growth and elimination of multiple metastases in human prostate and breast xenografts by systemic inoculation of a host defense-like lytic peptide. Cancer Res, 2006. 66(10): p. 5371-8. 39. Papo, N., et al., A novel lytic peptide composed of DL-amino acids selectively kills cancer cells in culture and in mice. J Biol Chem, 2003. 278(23): p. 21018-23. 40. Ting, C.H., et al., The mechanisms by which pardaxin, a natural cationic antimicrobial peptide, targets the endoplasmic reticulum and induces c-FOS. Biomaterials, 2014. 35(11): p. 3627-40. 41. Chen, C., et al., Molecular mechanisms of anticancer action and cell selectivity of short alpha-helical peptides. Biomaterials, 2014. 35(5): p. 1552-61. 42. Pouny, Y. and Y. Shai, Interaction of D-amino acid incorporated analogues of pardaxin with membranes. Biochemistry, 1992. 31(39): p. 9482-90. 43. Santamaria, C., et al., Antimicrobial activity of myotoxic phospholipases A2 from crotalid snake venoms and synthetic peptide variants derived from their C-terminal region. Toxicon, 2005. 45(7): p. 807-15. 44. Yu, H.Y., et al., Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities. Chembiochem, 2010. 11(16): p. 2273-82. 45. Moore, A.J., D.A. Devine, and M.C. Bibby, Preliminary experimental anticancer activity of cecropins. Pept Res, 1994. 7(5): p. 265-9. 46. Phillips, J.C., et al., Scalable molecular dynamics with NAMD. J Comput Chem, 2005. 26(16): p. 1781-802. 47. MacKerell, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B, 1998. 102(18): p. 3586-616. 48. Klauda, J.B., et al., Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B, 2010. 114(23): p. 7830-43. 49. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A, 1985. 31(3): p. 1695-1697. 50. Tsai, C.W., et al., Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J Mol Biol, 2009. 392(3): p. 837-54. 51. Isralewitz, B., M. Gao, and K. Schulten, Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol, 2001. 11(2): p. 224-30. 52. Andersen, H.C., Rattle - a Velocity Version of the Shake Algorithm for Molecular-Dynamics Calculations. Journal of Computational Physics, 1983. 52(1): p. 24-34. 53. Miyamoto, S. and P.A. Kollman, Settle - an Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models. Journal of Computational Chemistry, 1992. 13(8): p. 952-962. 54. Lee, B. and F.M. Richards, The interpretation of protein structures: estimation of static accessibility. J Mol Biol, 1971. 55(3): p. 379-400. 55. Song, J., et al., Design of an acid-activated antimicrobial peptide for tumor therapy. Mol Pharm, 2013. 10(8): p. 2934-41.
|