帳號:guest(52.14.205.205)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施詠馨
作者(外文):shih, yung-hsin
論文名稱(中文):建構果蠅側號角腦區的神經網路圖譜
論文名稱(外文):Mapping Lateral Horn Circuits in the Drosophila Brain
指導教授(中文):江安世
指導教授(外文):Chiang, Ann-Shyn
口試委員(中文):傅在峰
桑自剛
口試委員(外文):Fu, Tsai-Feng
Sang, Tzu-Kang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:101080592
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:66
中文關鍵詞:側號角果蠅
外文關鍵詞:lateral horndrosophila
相關次數:
  • 推薦推薦:0
  • 點閱點閱:114
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在果蠅嗅覺系統中,環境中的味道分子經由嗅葉(antennallobe)整合,產生的訊號將由嗅覺投射細胞(projection neurons)傳遞到更高層的腦區-蕈狀體(mushroom body)和側號角(lateral horn)。許多證據顯示,在嗅覺學習和記憶行為中主要是藉由蕈狀體調控,但對側號角機制與功能的研究是相當少的,因此我們以側號角作為研究對象,蒐集了108 個表現神經在側號角的果蠅,藉由影像分析方法探討神經細胞的形態及特性並且預測嗅覺資訊的流向,將結果分成兩大類,再細分成22種類型,建構以側號角為主的嗅覺神經網路圖譜,並且藉由免疫染色法標定GABAergic 神經,以此分辨表現於側號角的抑制型細胞,在結果中發現LHD/V-LN,LHD-PN4,LHD-PN6和MB-C5 屬於抑制型細胞。而在我所蒐集的這些表現神經在側號角的果蠅,發現了一群令人感到興奮的類型(LHPNCalyx:MB-C4 到MB-C7),連接了蕈狀體和側號角,為了釐清此神經的功能,我將這群連接蕈狀體和側號角的神經,用人工的方法使它們表現,在光感應的行為實驗中,發現MB-C4 神經參與吸引的行為,此外,藉由GRASP 實驗,證實MB-C4 和蕈狀體神經以及側號角神經在蕈狀體和側號角這兩個腦區有連接。總和上述實驗,我建構了側號角的神經網路圖譜,並且發現MB-C4 神經會調控嗅覺的先天性吸引行為。
In Drosophila melanogaster, olfactory projection neurons (PNs) deliver odor information from antennal lobe (AL) to two higher brain centers: mushroom body(MB) and lateral horn (LH). Numerous evidences implicate key roles of the MB and
its downstream circuits in olfactory learning and memory,but little is known about the roles of the LH. Here, I characterized more than 100 GAL4 lines containing LH related neurons and constructed a comprehensive connectivity map for predicting odor information flow. Based on morphology and polarity of individual neurons, I classified LH neurons into 2 classes, 7 families and 22 types. Immunohistochemical
labeling of 22 types of LH neurons showed that only 5 types were GABAergic: LHD/V-LN1, LHD/V-LN2, LHD-PN4, LHD-PN5 and MB-C5 neurons. I focused on studying LH-PNCalyx neurons (four types: MB-C4 to -C7) connecting between LH and MB calyx. To understand innate function, I activated each neuron with optogenetics.
and found that activation of MB-C4 and MB-C7, but not MB-C5 and MB-C6,
triggered attraction behavior. Furthermore, using GFP reconstitution across synaptic
partners (GRASP) labeling, I showed that MB-C4 neurons connected with AL-PN
and LH local neurons at the LH and with AL-PN and MB neurons at the calyx. In
conclusion, I constructed a map of LH circuits and showed that innate olfactory
attraction may involve MB-C4 neurons.
致謝 1
摘要 3
Abstract 4
1. Introduction 5
1.1 Taking Drosophila as an Animal Model to Study the Olfactory System……5
1.2 The First Level of Olfactory System-Olfactory Sensor Neuron and Antennal
Lobe………………...……………………….……………………..……………..6
1.3 The Higher Level of Olfactory System-Mushroom Body and Lateral Horn…6
1.4 Summary……………………………………………………………………….9
2. Materials and Methods 10
2.1 Fly Strains……………………………………………………………..……10
2.2. Sample Preparation and Immunohistochemistry 10
2.3. Confocal Imaging and Post-recording Image Processing 11
2.4 Polarity Imaging………….…………………………………………….12
2.5. Single Neuron Imaging 12
2.6. GFP Reconstitution Across Synaptic Partners (GRASP) 12
2.7. Optogenetic Assay 13
2.8. Odor Acuity and Learning Behavior Testing 13
3. Results 15
3.1. Strategy Analysis 15
3.2. Lateral Horn Neurons Classification 15
3.3. Identification of the Class of Lateral Horn-Local Neuron 16
3.4. Identification of the Class of Lateral Horn-Projection Neuron 17
3.5. Identification of the Class of Lateral Horn-Projection NeuronCalyx 18
3.6. Information Flow with Lateral Horn-Projection Neuron 19
3.7 GABAergic staining of Lateral Horn Neurons…………………………...19
3.8 The Behavior Result of Lateral Horn-Projection NeuronCalyx…………19

4. Discussion 21
4.1 Investigation of Lateral Horn Neurons Morphology ………………………….…21
4.2 Information Flow within Lateral Horn Neurons…………………………..….22
4.3 Identification of Lateral Horn Inhibitory Local Neuron and Projection Neuron by
Immunolabling…………………………..……………………………………….22
4.4 Investigate the Character of Lateral Horn-Projection Neuroncalyx in Innate and
Learning Behavior …………………………………………….…………...……23
5. References……………………………...………………………………………25
6. Figures and Figure legends………………………………………………31
7. Appendix Figures and Figure legends 57
1. Pelvig, D.P., Pakkenberg, H., Stark, A.K., and Pakkenberg, B. (2008). Neocortical glial cell numbers in human brains. Neurobiol. Aging. 29, 1754-1762.
2. Chiel, H.J., and Beer, R.D. (1997). The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends. Neurosci. 20, 553-557.
3. Berridge, K.C. (2004). Motivation concepts in behavioral neuroscience. Neurosci. Behav. Physiol. 81, 179-209.
4. Ardiel, E.L., and Rankin, C.H. (2010). An elegant mind: learning and memory in Caenorhabditis elegans. Learning & memory (Cold Spring Harbor, N.Y.) 17, 191-201.
5. Gordon, P., Hingula, L., Krasny, M.L., Swienckowski, J.L., Pokrywka, N.J., and Raley-Susman, K.M. (2008). The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans. Dev. Genes. Evol. 218, 541-551.
6. Smith, D.P. (2007). Odor and pheromone detection in Drosophila melanogaster. Pflugers Archiv : European journal of physiology 454, 749-758.
7. Hansson, B.S., Knaden, M., Sachse, S., Stensmyr, M.C., and Wicher, D. (2010). Towards plant-odor-related olfactory neuroethology in Drosophila. Chemoecology 20, 51-61.
8. Hildebrand, J.G., and Shepherd, G.M. (1997). Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595-631.
9. Tanaka, N.K., Awasaki, T., Shimada, T., and Ito, K. (2004). Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14, 449-457.
10. Masse, N.Y., Turner, G.C., and Jefferis, G.S. (2009). Olfactory information processing in Drosophila. Curr. Biol. 19, R700-713.
11. de Bruyne, M., Foster, K., and Carlson, J.R. (2001). Odor coding in the Drosophila antenna. Neuron 30, 537-552.
12. Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A., and Carlson, J.R. (2003). Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827-841.
13. Hallem, E.A., Ho, M.G., and Carlson, J.R. (2004). The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965-979.
14. Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H., and Vosshall, L.B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703-714.
15. Couto, A., Alenius, M., and Dickson, B.J. (2005). Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535-1547.
16. Fishilevich, E., and Vosshall, L.B. (2005). Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548-1553.
17. Laissue, P.P., Reiter, C., Hiesinger, P.R., Halter, S., Fischbach, K.F., and Stocker, R.F. (1999). Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J. Comp. Neurol. 405, 543-552.
18. Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A., and Axel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725-736.
19. Silbering, A.F., Okada, R., Ito, K., and Galizia, C.G. (2008). Olfactory information processing in the Drosophila antennal lobe: anything goes? J. Neurosci. 28, 13075-13087.
20. Wilson, R.I. (2013). Early olfactory processing in Drosophila: mechanisms and principles. Annu. Rev. Neurosci. 36, 217-241.
21. Keene, A.C., and Waddell, S. (2007). Drosophila olfactory memory: single genes to complex neural circuits. Nat. Rev. Neurosci. 8, 341-354.
22. Jefferis, G.S., Potter, C.J., Chan, A.M., Marin, E.C., Rohlfing, T., Maurer, C.R., Jr., and Luo, L. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187-1203.
23. Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D. (1997). The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124, 761-771.
24. Lin, H.H., Lai, J.S., Chin, A.L., Chen, Y.C., and Chiang, A.S. (2007). A map of olfactory representation in the Drosophila mushroom body. Cell 128, 1205-1217.
25. Luo, S.X., Axel, R., and Abbott, L.F. (2010). Generating sparse and selective third-order responses in the olfactory system of the fly. Proc. Natl. Acad. Sci. USA 107, 10713-10718.
26. Tomchik, S.M. (2013). Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila. J. Neurosci. 33, 2166-2176.
27. Yi, W., Zhang, Y., Tian, Y., Guo, J., Li, Y., and Guo, A. (2013). A subset of cholinergic mushroom body neurons requires go signaling to regulate sleep in Drosophila. Sleep 36, 1809-1821.
28. Quinn, W.G., Harris, W.A., and Benzer, S. (1974). Conditioned behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 71, 708-712.
29. Tempel, B.L., Bonini, N., Dawson, D.R., and Quinn, W.G. (1983). Reward learning in normal and mutant Drosophila. Proc. Natl. Acad. Sci. USA 80, 1482-1486.
30. Heisenberg, M., Borst, A., Wagner, S., and Byers, D. (1985). Drosophila mushroom body mutants are deficient in olfactory learning. J. Neurogenet. 2, 1-30.
31. de Belle, J.S., and Heisenberg, M. (1994). Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263, 692-695.
32. Wang, Y., Chiang, A.S., Xia, S., Kitamoto, T., Tully, T., and Zhong, Y. (2003). Blockade of neurotransmission in Drosophila mushroom bodies impairs odor attraction, but not repulsion. Curr. Biol. 13, 1900-1904.
33. Fisek, M., and Wilson, R.I. (2014). Stereotyped connectivity and computations in higher-order olfactory neurons. Nat. Neurosci. 17, 280-288.
34. Jortner, R.A., Farivar, S.S., and Laurent, G. (2007). A simple connectivity scheme for sparse coding in an olfactory system. J. Neurosci. 27, 1659-1669.
35. Sandoz, J.C., Deisig, N., de Brito Sanchez, M.G., and Giurfa, M. (2007). Understanding the logics of pheromone processing in the honeybee brain: from labeled-lines to across-fiber patterns. Front. Behavi. Neurosci. 1, 5.
36. Roussel, E., Carcaud, J., Combe, M., Giurfa, M., and Sandoz, J.C. (2014). Olfactory coding in the honeybee lateral horn. Curr. Biol. 24, 561-567.
37. Wang, J., Ma, X., Yang, J.S., Zheng, X., Zugates, C.T., Lee, C.-H.J., and Lee, T. (2004). Transmembrane/Juxtamembrane Domain-Dependent Dscam Distribution and Function during Mushroom Body Neuronal Morphogenesis. Neuron 43, 663-672.
38. Robinson, I.M., Ranjan, R., and Schwarz, T.L. (2002). Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature 418, 336-340.
39. Fan, P., Manoli, D.S., Ahmed, O.M., Chen, Y., Agarwal, N., Kwong, S., Cai, A.G., Neitz, J., Renslo, A., Baker, B.S., et al. (2013). Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 154, 89-102.
40. Feinberg, E.H., VanHoven, M.K., Bendesky, A., Wang, G., Fetter, R.D., Shen, K., and Bargmann, C.I. (2008). GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353-363.
41. Suh, G.S., Ben-Tabou de Leon, S., Tanimoto, H., Fiala, A., Benzer, S., and Anderson, D.J. (2007). Light activation of an innate olfactory avoidance response in Drosophila. Curr. Biol. 17, 905-908.
42. Tanaka, N.K., Tanimoto, H., and Ito, K. (2008). Neuronal assemblies of the Drosophila mushroom body. J. Comp. Neurol. 508, 711-755.
43. Lin, H.H., Chu, L.A., Fu, T.F., Dickson, B.J., and Chiang, A.S. (2013). Parallel neural pathways mediate CO2 avoidance responses in Drosophila. Science 340, 1338-1341.
44. Liang, L., Li, Y., Potter, C.J., Yizhar, O., Deisseroth, K., Tsien, R.W., and Luo, L. (2013). GABAergic projection neurons route selective olfactory inputs to specific higher-order neurons. Neuron 79, 917-931.
45. Heimbeck, G., Bugnon, V., Gendre, N., Keller, A., and Stocker, R.F. (2001). A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98, 15336-15341.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *