帳號:guest(18.224.59.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李威辰
作者(外文):Li, Wei-Chen
論文名稱(中文):磷酸運轉膜蛋白PHO1的基因克隆、蛋白質表達與純化
論文名稱(外文):Cloning, expression and purification of phosphate transporter, PHO1 from Arabisopsis thaliana and Oryza sativa
指導教授(中文):孫玉珠
指導教授(外文):Sun, Yuh-Ju
口試委員(中文):蕭傳鐙
潘榮隆
口試委員(外文):Chwan-Deng (David) Hsiao
Rong-Long Pan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:101080577
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:40
中文關鍵詞:無機磷酸鹽膜蛋白蛋白質表現蛋白質純化
外文關鍵詞:Inorganic phosphatemembrane proteinprotein expressionprotein purification
相關次數:
  • 推薦推薦:0
  • 點閱點閱:163
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
膜蛋白為座落在細胞膜上的蛋白質,進行養分的吸收及儲存、廢物的排放等重要生化功能,是細胞與外界及胞器與胞器之間物質互通及訊息傳遞的重要介質。截至2013年,被解析出的膜蛋白分子結構數目約只佔所有已知的蛋白分子結構(約十萬個)的1 %,這顯示出膜蛋白分子結構的研究仍是結構生物領域的一大挑戰。本論文實驗目的為進行膜蛋白的異源表達、蛋白質純化與製備,希望利用晶體學方法進行分子結構的研究。磷 (P) 對於生物體的成長和發育是一種非常重要的元素,是組成生物膜、核醣核酸等生物分子的必要元素。植物體中所需要的磷是以無機磷酸鹽 (inorganic phosphate) 的方式存在,無機磷酸鹽在植物中如何運輸、調節、以及有效率地利用是一個相當重要的研究課題。本研究將以阿拉伯芥 (Arabisopsis thaliana) 及水稻 (Oryza sativa) 的磷酸運轉膜蛋白 (PHO1) 為研究對象,進行膜蛋白表達與純化系統的建立。文獻指出阿拉伯芥及水稻pho1基因變異下,無機磷酸鹽會堆積在根部,無法運送至莖部及其他部位,導致植株凋亡,故PHO1在磷酸鹽平衡中扮演一個重要角色。PHO1具有一親水性的SPX功能域及一疏水性的EXS功能域,其磷酸運轉的功能被報導是位於EXS功能域。PHO1-EXS分子量約為46 kDa,預測有十個穿膜區域,其詳細的功能及分子結構資訊尚待研究。我們已成功在酵母菌 (Saccharomyces cerevisiae) 蛋白質異源表達系統中克隆、表達出PHO1-EXS並利用介面活性劑將PHO1-EXS自細胞膜溶出,得到可溶性的膜蛋白。接著利用各種層析法進行分離純化PHO1-EXS膜蛋白。由逆向原態膠體電泳 (Reverse Native PAGE) 的實驗指出PHO1在水溶液中具有單一構形。由粒徑管柱層析法 (size exclusion Chromatography, SEC) 的實驗顯示PHO1在水溶液中為雙元體構型。目前我們對PHO1分子的生物物理特性已有一初步的了解,但為了要進行晶體學的實驗,PHO1的產量、純度及穩定度還需要提升。
Phosphate is an essential mineral in both prokaryotic and eukaryotic living cells. Phosphate is the major component of many bio-molecules such as nucleic acids, nucleoside triphosphate and many membrane lipids. Phosphate is also key components in enzyme activity regulation and signal transduction pathways. In plants, phosphate homeostasis is a complicated network, in which phosphate transportation across biological membranes is a major component. Several phosphate transporters are membrane proteins and mainly locate at plasma membrane or endomembrane system that in charge of phosphate acquisition and efflux. Phosphate transporters in plants can be classified into three groups, high affinity phosphate transporter, low affinity phosphate transporter and phosphate exporter. PHO1 is the first protein to be correlated with phosphate export. The detail molecular mechanism of PHO1 is still not clear and there is no three dimensional structure of PHO1. PHO1 contains the N-terminal soluble domain, SPX and the C-terminal transmembrane domain, EXS domain. EXS domain only is reported to have a function of phosphate export. The molecular weight of PHO1-EXS is about 46 kDa. It is predicted that PHO1-EXS might have 10 transmembrane helices. In this study, we successfully cloned, expressed Arabisopsis thaliana and Oryza sativa PHO1-EXS by yeast heterologous protein expression system. Arabisopsis thaliana and Oryza sativa PHO1-EXS was solubilized by detergent and purified by immobilized metal ion affinity chromatography (IMAC). Size-exclusion chromatography (SEC) indicates that purified PHO1-EXS form dimer in solution. Reverse Native PAGE indicate that purified PHO1-EXS is in a single conformation in solution. Also, the pre-crystallization trials are undergoing. However, the purity and quantity of PHO1-EXS still need to be improved in order to do the structural study by crystallography method in the future.
Introduction 2
Material and methods 5
Heterologous expression of AtPHO1-EXS in Escherichia coli 5
1. Cloning of AtPHO1-EXS cDNA to expression vector pET-28a 5
2. Transformation and expression 5
3. Preparation of E. coli inverted membrane vesicle 6
Heterologous expression of AtPHO1-EXS and OsPHO1-EXS in S. cerevisiae 7
1. Cloning of AtPHO1-EXS cDNA and OsPHO1-EXS cDNA into expression vector pYES2 7
2. Transformation and expression 7
3. Preparation of S. cerevisiae microsome 8
Protein quantification 9
SDS-PAGE and Western blotting 9
Membrane protein solublization and purification 10
Size-exclusion chromatography 11
Protein crystallization 11
Results and Discussion 12
Bioinformatics analysis of plant PHO1 12
Heterologous expression of PHO1-EXS in E. coli 14
Heterologous expression of PHO1-EXS in yeast 15
Solubilization of PHO1-EXS 17
IMAC purification of PHO1-EXS 18
Size-exclusion chromatography 20
Crystallization of PHO1-EXS 22
Conclusion 23
References 25
Figures……………………………………………………………………………….30
1. Chiou, T. J., and Lin, S. I. (2011) Signaling network in sensing phosphate availability in plants. Annual review of plant biology 62, 185-206
2. Hsieh, Y. J., and Wanner, B. L. (2010) Global regulation by the seven-component Pi signaling system. Current opinion in microbiology 13, 198-203
3. Renkema, K. Y., Alexander, R. T., Bindels, R. J., and Hoenderop, J. G. (2008) Calcium and phosphate homeostasis: concerted interplay of new regulators. Annals of medicine 40, 82-91
4. Lynch, J. (1995) Root Architecture and Plant Productivity. Plant physiology 109, 7-13
5. Jukes, T. H. (1995) Mineral nutrition of plants. Photosynthesis research 46, 13-15
6. Hetrick, B. A., Wilson, G. W., and Figge, D. A. (1994) The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environmental pollution 86, 171-179
7. Raghothama, K. G. (2000) Phosphate transport and signaling. Current opinion in plant biology 3, 182-187
8. Wang, S., Zhang, S., Sun, C., Xu, Y., Chen, Y., Yu, C., Qian, Q., Jiang, D. A., and Qi, Y. (2014) Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). The New phytologist 201, 91-103
9. Aung, K., Lin, S. I., Wu, C. C., Huang, Y. T., Su, C. L., and Chiou, T. J. (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant physiology 141, 1000-1011
10. Bari, R., Datt Pant, B., Stitt, M., and Scheible, W. R. (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant physiology 141, 988-999
11. Bustos, R., Castrillo, G., Linhares, F., Puga, M. I., Rubio, V., Perez-Perez, J., Solano, R., Leyva, A., and Paz-Ares, J. (2010) A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS genetics 6, e1001102
12. Rubio, V., Linhares, F., Solano, R., Martin, A. C., Iglesias, J., Leyva, A., and Paz-Ares, J. (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & development 15, 2122-2133
13. Liu, T. Y., Huang, T. K., Tseng, C. Y., Lai, Y. S., Lin, S. I., Lin, W. Y., Chen, J. W., and Chiou, T. J. (2012) PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. The Plant cell 24, 2168-2183
14. Rojas-Triana, M., Bustos, R., Espinosa-Ruiz, A., Prat, S., Paz-Ares, J., and Rubio, V. (2013) Roles of ubiquitination in the control of phosphate starvation responses in plants(f). Journal of integrative plant biology 55, 40-53
15. Park, B. S., Seo, J. S., and Chua, N. H. (2014) NITROGEN LIMITATION ADAPTATION Recruits PHOSPHATE2 to Target the Phosphate Transporter PT2 for Degradation during the Regulation of Arabidopsis Phosphate Homeostasis. The Plant cell
16. Mitsukawa, N., Okumura, S., Shirano, Y., Sato, S., Kato, T., Harashima, S., and Shibata, D. (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proceedings of the National Academy of Sciences of the United States of America 94, 7098-7102
17. Daram, P., Brunner, S., Rausch, C., Steiner, C., Amrhein, N., and Bucher, M. (1999) Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. The Plant cell 11, 2153-2166
18. Poirier, Y., Thoma, S., Somerville, C., and Schiefelbein, J. (1991) Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant physiology 97, 1087-1093
19. Hamburger, D., Rezzonico, E., MacDonald-Comber Petetot, J., Somerville, C., and Poirier, Y. (2002) Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. The Plant cell 14, 889-902
20. Stefanovic, A., Arpat, A. B., Bligny, R., Gout, E., Vidoudez, C., Bensimon, M., and Poirier, Y. (2011) Over-expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux. The Plant journal : for cell and molecular biology 66, 689-699
21. Arpat, A. B., Magliano, P., Wege, S., Rouached, H., Stefanovic, A., and Poirier, Y. (2012) Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. The Plant journal : for cell and molecular biology 71, 479-491
22. Spain, B. H., Koo, D., Ramakrishnan, M., Dzudzor, B., and Colicelli, J. (1995) Truncated forms of a novel yeast protein suppress the lethality of a G protein alpha subunit deficiency by interacting with the beta subunit. The Journal of biological chemistry 270, 25435-25444
23. Vaughan, A. E., Mendoza, R., Aranda, R., Battini, J. L., and Miller, A. D. (2012) Xpr1 is an atypical G-protein-coupled receptor that mediates xenotropic and polytropic murine retrovirus neurotoxicity. Journal of virology 86, 1661-1669
24. Hurlimann, H. C., Pinson, B., Stadler-Waibel, M., Zeeman, S. C., and Freimoser, F. M. (2009) The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. EMBO reports 10, 1003-1008
25. Ghillebert, R., Swinnen, E., De Snijder, P., Smets, B., and Winderickx, J. (2011) Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. The Biochemical journal 434, 243-251
26. Giovannini, D., Touhami, J., Charnet, P., Sitbon, M., and Battini, J. L. (2013) Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell reports 3, 1866-1873
27. Wege, S., and Poirier, Y. (2014) Expression of the mammalian Xenotropic Polytropic Virus Receptor 1 (XPR1) in tobacco leaves leads to phosphate export. FEBS letters 588, 482-489
28. Battini, J. L., Rasko, J. E., and Miller, A. D. (1999) A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proceedings of the National Academy of Sciences of the United States of America 96, 1385-1390
29. Tailor, C. S., Nouri, A., Lee, C. G., Kozak, C., and Kabat, D. (1999) Cloning and characterization of a cell surface receptor for xenotropic and polytropic murine leukemia viruses. Proceedings of the National Academy of Sciences of the United States of America 96, 927-932
30. Yang, Y. L., Guo, L., Xu, S., Holland, C. A., Kitamura, T., Hunter, K., and Cunningham, J. M. (1999) Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1. Nat Genet 21, 216-219
31. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72, 248-254
32. Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nature methods 9, 671-675
33. Secco, D., Baumann, A., and Poirier, Y. (2010) Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant physiology 152, 1693-1704
34. Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2002) Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics / editoral board, Andreas D. Baxevanis ... [et al.] Chapter 2, Unit 2 3
35. Kyte, J., and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. Journal of molecular biology 157, 105-132
36. Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, J. S., Silman, I., and Sussman, J. L. (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21, 3435-3438
37. McGuffin, L. J., Bryson, K., and Jones, D. T. (2000) The PSIPRED protein structure prediction server. Bioinformatics 16, 404-405
38. Jones, D. T. (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23, 538-544
39. Dumon-Seignovert, L., Cariot, G., and Vuillard, L. (2004) The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein expression and purification 37, 203-206
40. Hortsch, R., and Weuster-Botz, D. (2011) Growth and recombinant protein expression with Escherichia coli in different batch cultivation media. Applied microbiology and biotechnology 90, 69-76
41. Andre, N., Cherouati, N., Prual, C., Steffan, T., Zeder-Lutz, G., Magnin, T., Pattus, F., Michel, H., Wagner, R., and Reinhart, C. (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein science : a publication of the Protein Society 15, 1115-1126
42. Figler, R. A., Omote, H., Nakamoto, R. K., and Al-Shawi, M. K. (2000) Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein. Archives of biochemistry and biophysics 376, 34-46
43. Wagner, S., Bader, M. L., Drew, D., and de Gier, J. W. (2006) Rationalizing membrane protein overexpression. Trends in biotechnology 24, 364-371
44. Prive, G. G. (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41, 388-397
45. Kalipatnapu, S., and Chattopadhyay, A. (2005) Membrane protein solubilization: recent advances and challenges in solubilization of serotonin1A receptors. IUBMB life 57, 505-512
46. Rath, A., Glibowicka, M., Nadeau, V. G., Chen, G., and Deber, C. M. (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America 106, 1760-1765
47. Sengottaiyan, P., Ruiz-Pavon, L., and Persson, B. L. (2013) Functional expression, purification and reconstitution of the recombinant phosphate transporter Pho89 of Saccharomyces cerevisiae. The FEBS journal 280, 965-975
48. Nussaume, L., Kanno, S., Javot, H., Marin, E., Pochon, N., Ayadi, A., Nakanishi, T. M., and Thibaud, M. C. (2011) Phosphate Import in Plants: Focus on the PHT1 Transporters. Frontiers in plant science 2, 83
49. Newby, Z. E., O'Connell, J. D., 3rd, Gruswitz, F., Hays, F. A., Harries, W. E., Harwood, I. M., Ho, J. D., Lee, J. K., Savage, D. F., Miercke, L. J., and Stroud, R. M. (2009) A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nature protocols 4, 619-637
50. Sonoda, Y., Cameron, A., Newstead, S., Omote, H., Moriyama, Y., Kasahara, M., Iwata, S., and Drew, D. (2010) Tricks of the trade used to accelerate high-resolution structure determination of membrane proteins. FEBS letters 584, 2539-2547
51. Low, C., Moberg, P., Quistgaard, E. M., Hedren, M., Guettou, F., Frauenfeld, J., Haneskog, L., and Nordlund, P. (2013) High-throughput analytical gel filtration screening of integral membrane proteins for structural studies. Biochimica et biophysica acta 1830, 3497-3508
52. Newstead, S., Ferrandon, S., and Iwata, S. (2008) Rationalizing alpha-helical membrane protein crystallization. Protein science : a publication of the Protein Society 17, 466-472
53. Parker, J. L., and Newstead, S. (2012) Current trends in alpha-helical membrane protein crystallization: an update. Protein science : a publication of the Protein Society 21, 1358-1365
54. Pedersen, B. P., Kumar, H., Waight, A. B., Risenmay, A. J., Roe-Zurz, Z., Chau, B. H., Schlessinger, A., Bonomi, M., Harries, W., Sali, A., Johri, A. K., and Stroud, R. M. (2013) Crystal structure of a eukaryotic phosphate transporter. Nature 496, 533-536
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *