帳號:guest(3.138.172.170)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張志萱
作者(外文):Chang, Chih Hsuan
論文名稱(中文):亞力山大氏症之GFAP基因突變對其聚合形成絲狀纖維能力及穩定性之影響
論文名稱(外文):Effects of Alexander Disease Causing Mutations on Glial Fibrillary Acidic Protein Filament Assembly and Stability
指導教授(中文):彭明德
指導教授(外文):Perng, Ming Der
口試委員(中文):焦傳金
汪宏達
口試委員(外文):Chiao, Chuan Chin
Wang, Horng Dar(HONDA)
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:101080576
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:75
中文關鍵詞:神經膠質纖維酸性蛋白質突變亞歷山大氏症中間型蛋白絲凋亡蛋白酶
外文關鍵詞:GFAPMutationAlexander diseaseIntermediate filamentCaspase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:247
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
亞歷山大氏症(Alexander disease)是一種因為中樞神經內星狀細胞官能障礙(Astrocyte dysfunction)所引起的的中樞神經退化性疾病。此疾病主要是由於星狀細胞的中間型蛋白絲(Intermediate filaments; Ifs),即神經膠質纖維酸性蛋白質(Glial fibrillary acidic protein; GFAP)基因突變引起。亞歷山大氏症的主要病理特徵是星狀細胞內有大量沉積的包含體(Inclusion body),即Rosenthal fibers,其主要由GFAP、小分子量熱休克蛋白質(Small heat shock protein) Hsp27及alphaB-crystallin組成。雖然目前已知基因突變造成GFAP異常而引起亞歷山大氏症,但GFAP突變引起疾病的機制尚不清楚。大部分GFAP突變都是錯義突變(missense mutation)改變單一個或少數幾個胺基酸導致GFAP結構及功能異常而引起疾病。本研究目的為探討三種新型GFAP突變(∆4 GFAP, IDF GFAP, E312X GFAP)如何影響GFAP形成絲狀結構的能力及其穩定性。結果顯示,此三種GFAP突變皆會引起GFAP堆積(Aggregation),破壞其絲狀結構,其中又以E312X GFAP影響最為嚴重。有表現E312X GFAP的細胞中有活化Caspases及細胞存活率下降的現象。活化的Caspases 會進一步降解GFAP產生片段(GFAP fragment)。藉由本次研究結果發現經Caspase降解的不同的GFAP突變會產生不同的GFAP fragments,可進一步探討GFAP 蛋白質水解(proteolysis)與亞歷山大氏症致病機轉的關係。
Alexander disease (AxD) is a primary genetic disorder of astrocytes caused by heterozygous mutations in GFAP, which encodes the major astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP). The mechanism of GFAP mutation causing the AxD remains unclear. The aim of this study is to investigate the effect of the novel AxD-causing mutation on GFAP filament formation and stability by using filament assembly in vitro and transient transfection in cultured cells. The results showed that all the GFAP mutations perturbed the filament assembly in vitro and in transiently transfected cells. The E312X GFAP caused the most dramatic effects on filament assembly both in vitro and in transiently transfected cells. This truncated mutant caused extensive filament aggregation coinciding with the activation of caspases, cleavage of GFAP, and a significant decrease in cell viability. These data provide a direct link of GFAP mutation on filament aggregation and loss of cell viability through the activation of caspases and cleavage of GFAP, suggesting that these could be contributing factors in the development of Alexander disease.
Abstract I
摘要 II
致謝 III
Abbreviation IV
Chapter 1 Introduction 1
1.1 Alexander disease 1
1.2 GFAP 2
1.3 Mutations in GFAP are associated with Alexander disease 4
1.4 Outline of this study 6
Chapter 2 Materials & Methods 8
2.1 Plasmid construction and site directed mutagenesis 8
2.2 Bacterial expression and purification of recombinant GFAPs 8
2.3 In vitro assembly assay and sedimentation assay 10
2.4 Electron microscopy 12
2.5 Cell cultures and transient transfection 12
2.6 Immunofluorescence microscopy 13
2.7 Subcellular fractionation 14
2.8 Immunoblotting 15
2.9 Immunoprecipitation 15
Chapter 3 Results 17
3.1 Effects of mutant GFAP upon the in vitro filament assembly 17
3.2 Epitope mapping of anti-GFAP antibodies 21
3.3 Effects of GFAP mutations upon IF network formation in SW13 (Vim+) cells 21
3.4 Assembly properties of KGFAP and mutant GFAP in transfected human astrocytoma U343MG cells 23
3.5 GFAP is cleaved by both caspase 3 and 6 in transfected SW13 cells. 25
3.6 The degradation product p20 was produced by caspase 3 cleavage. 27
Chapter 4 Discussion 29
4.1 Impact of GFAP Mutations on Filament Assembly and Network Organization 29
4.2 Paracrystal structure 31
4.3 Caspases-mediated proteolysis of GFAP 33
4.4 Further prospects 35
References 39
Tables 49
Table 1 The primers used for construction of variant GFAP constructs. 49
Table 2 Primary antibody list 50
Figures 51
Figure 1 Expression and purification of KGFAP , and electrophoretic analysis of GFAP variants. 53
Figure 2 In virto assembly of purified GFAP variants observed by TEM. 54
Figure 3 Paracrystals of the E312X GFAP. 55
Figure 4 Characterization of mutant GFAP by the in vitro assembly assay. 56
Figure 5 Effects of E312X on WT GFAP in vitro assembly assay 58
Figure 6 Immunoblotting analysis of purified recombinant GFAP variants. 61
Figure 7 The different staining patterns of the cells transfected with GFAP variants 63
Figure 8 Mutant GFAPs and KGFAP aggregate also disrupted endogenous vimentin networks 65
Figure 9 A dominant effect of E312X GFAP over WT GFAP 67
Figure 10 Mutant and KGFAP causes aggregation of GFAP in U343MG astrocytoma cells. 69
Figure 11 GFAP is cleaved by caspase 6 and 3. 71
Figure 12 The degradation product p20 was produced by caspase 3 cleavage. 72
Figure 13 Schematic representation of the molecular arrangement in the fundamental pattern observed in paracrystals of E312X GFAP. 73
Fig.14. Model summarizes the role of caspase-generated GFAP fragments. 74
Appendix 75
Appendix 1 Identification of a novel nonsense mutation in the rod domain of GFAP that is associated with Alexander disease 75
Aebi, U., J. Cohn, L. Buhle, and L. Gerace. 1986. The nuclear lamina is a meshwork of intermediate-type filaments. Nature. 323:560-564.
Alexandr, W.S. 1949. Progressive Fibrixoid Degeneration of Fibrillary Astrocvtes Associated With Mental Retardation in a Hydrocephalic Infant Brain research. 72:373-381 (373pl).
Barkovich, A.J., and A. Messing. 2006. Alexander disease: not just a leukodystrophy anymore. Neurology. 66:468-469.
Blechingberg, J., I.E. Holm, K.B. Nielsen, T.H. Jensen, A.L. Jorgensen, and A.L. Nielsen. 2007. Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform. Glia. 55:497-507.
Byun, Y., F. Chen, R. Chang, M. Trivedi, K.J. Green, and V.L. Cryns. 2001. Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell death and differentiation. 8:443-450.
Caulin, C., G.S. Salvesen, and R.G. Oshima. 1997. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. The Journal of cell biology. 138:1379-1394.
Chen, F., R. Chang, M. Trivedi, Y. Capetanaki, and V.L. Cryns. 2003. Caspase proteolysis of desmin produces a dominant-negative inhibitor of intermediate filaments and promotes apoptosis. The Journal of biological chemistry. 278:6848-6853.
Chen, M.H., T.L. Hagemann, R.A. Quinlan, A. Messing, and M.D. Perng. 2013. Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation. ASN neuro. 5:e00125.
Chen, W.J., and R.K. Liem. 1994. The endless story of the glial fibrillary acidic protein. Journal of cell science. 107 ( Pt 8):2299-2311.
Chen, Y.S., S.C. Lim, M.H. Chen, R.A. Quinlan, and M.D. Perng. 2011. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Experimental cell research. 317:2252-2266.
Cho, W., and A. Messing. 2009. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice. Experimental cell research. 315:1260-1272.
Cohen, C., and W. Longley. 1966. Tropomyosin paracrystals formed by divalent cations. Science (New York, N.Y.). 152:794-796.
Cohen, C., A.G. Szent-Györgyi, and J. Kendrick-Jones. 1971. Paramyosin and the filaments of molluscan “catch” muscles: I. Paramyosin: Structure and assembly. Journal of molecular biology. 56:223-237.
Eliasson, C., C. Sahlgren, C.H. Berthold, J. Stakeberg, J.E. Celis, C. Betsholtz, J.E. Eriksson, and M. Pekny. 1999. Intermediate filament protein partnership in astrocytes. The Journal of biological chemistry. 274:23996-24006.
Flint, D., R. Li, L.S. Webster, S. Naidu, E. Kolodny, A. Percy, M. van der Knaap, J.M. Powers, J.F. Mantovani, J. Ekstein, J.E. Goldman, A. Messing, and M. Brenner. 2012. Splice site, frameshift, and chimeric GFAP mutations in Alexander disease. Human mutation. 33:1141-1148.
Gomi, H., T. Yokoyama, K. Fujimoto, T. Ikeda, A. Katoh, T. Itoh, and S. Itohara. 1995. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron. 14:29-41.
Gray, D.C., S. Mahrus, and J.A. Wells. 2010. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell. 142:637-646.
Head, M.W., E. Corbin, and J.E. Goldman. 1993. Overexpression and abnormal modification of the stress proteins alpha B-crystallin and HSP27 in Alexander disease. The American journal of pathology. 143:1743-1753.
Herrmann, H., and U. Aebi. 2000. Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Current opinion in cell biology. 12:79-90.
Herrmann, H., and U. Aebi. 2004. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annual review of biochemistry. 73:749-789.
Iwaki, T., A. Kume-Iwaki, R.K. Liem, and J.E. Goldman. 1989. Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell. 57:71-78.
Johnson, A.B., and A. Bettica. 1989. On-grid immunogold labeling of glial intermediate filaments in epoxy-embedded tissue. The American journal of anatomy. 185:335-341.
Julie E. Ralton, X.L., Aileen M. Hutcheson and Roy A. Quinlan. 1994. Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein. Cell. 107:1935-1948.
Koyama, Y., and J.E. Goldman. 1999. Formation of GFAP cytoplasmic inclusions in astrocytes and their disaggregation by alphaB-crystallin. The American journal of pathology. 154:1563-1572.
Ku, N.O., J. Liao, and M.B. Omary. 1997. Apoptosis generates stable fragments of human type I keratins. The Journal of biological chemistry. 272:33197-33203.
Ku, N.O., and M.B. Omary. 2001. Effect of mutation and phosphorylation of type I keratins on their caspase-mediated degradation. The Journal of biological chemistry. 276:26792-26798.
Li, R., A.B. Johnson, G. Salomons, J.E. Goldman, S. Naidu, R. Quinlan, B. Cree, S.Z. Ruyle, B. Banwell, M. D'Hooghe, J.R. Siebert, C.M. Rolf, H. Cox, A. Reddy, L.G. Gutierrez-Solana, A. Collins, R.O. Weller, A. Messing, M.S. van der Knaap, and M. Brenner. 2005. Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Annals of neurology. 57:310-326.
Liedtke, W., W. Edelmann, P.L. Bieri, F.C. Chiu, N.J. Cowan, R. Kucherlapati, and C.S. Raine. 1996. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron. 17:607-615.
M. Brenner, A.B.J., O. Boespflug-Tanguy, D. Rodriguez, J.E. Goldman, A. Messing. 2001. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nature genetics. 27:117-120.
Marceau, N., B. Schutte, S. Gilbert, A. Loranger, M.E. Henfling, J.L. Broers, J. Mathew, and F.C. Ramaekers. 2007. Dual roles of intermediate filaments in apoptosis. Experimental cell research. 313:2265-2281.
McCall, M.A., R.G. Gregg, R.R. Behringer, M. Brenner, C.L. Delaney, E.J. Galbreath, C.L. Zhang, R.A. Pearce, S.Y. Chiu, and A. Messing. 1996. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proceedings of the National Academy of Sciences of the United States of America. 93:6361-6366.
Messing, A., M.W. Head, K. Galles, E.J. Galbreath, J.E. Goldman, and M. Brenner. 1998. Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. The American journal of pathology. 152:391-398.
Middeldorp, J., and E.M. Hol. 2011. GFAP in health and disease. Prog Neurobiol. 93:421-443.
Mignot, T., J.W. Shaevitz, P.L. Hartzell, and D.R. Zusman. 2007. Evidence that focal adhesion complexes power bacterial gliding motility. Science (New York, N.Y.). 315:853-856.
Ming Der Perng, M.S., Shu Fang Wen, Rong Li, Terry Gibbon, Alan R. Prescott, Michael Brenner, and Roy A. Quinlan. 2006. The Alexander Disease–Causing Glial Fibrillary Acidic Protein. Am. J. Hum. Genet. 79:197-213.
Morishima, N. 1999. Changes in nuclear morphology during apoptosis correlate with vimentin cleavage by different caspases located either upstream or downstream of Bcl-2 action. Genes to cells : devoted to molecular & cellular mechanisms. 4:401-414.
Mouser, P.E., E. Head, K.H. Ha, and T.T. Rohn. 2006. Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brain. The American journal of pathology. 168:936-946.
Nakanishi, K., M. Maruyama, T. Shibata, and N. Morishima. 2001. Identification of a caspase-9 substrate and detection of its cleavage in programmed cell death during mouse development. The Journal of biological chemistry. 276:41237-41244.
Nam, T.S., J.H. Kim, C.H. Chang, W. Yoon, Y.S. Jung, S.Y. Kang, B.A. Shin, M.D. Perng, S.Y. Choi, and M.K. Kim. 2014. Identification of a novel nonsense mutation in the rod domain of GFAP that is associated with Alexander disease. European journal of human genetics : EJHG.
Omary, M.B., P.A. Coulombe, and W.H. McLean. 2004. Intermediate filament proteins and their associated diseases. The New England journal of medicine. 351:2087-2100.
Orth, K., A.M. Chinnaiyan, M. Garg, C.J. Froelich, and V.M. Dixit. 1996. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. The Journal of biological chemistry. 271:16443-16446.
Parry, D.A. 2005. Microdissection of the sequence and structure of intermediate filament chains. Advances in protein chemistry. 70:113-142.
Parry, D.A., S.V. Strelkov, P. Burkhard, U. Aebi, and H. Herrmann. 2007. Towards a molecular description of intermediate filament structure and assembly. Experimental cell research. 313:2204-2216.
Pekny, M., P. Leveen, M. Pekna, C. Eliasson, C.H. Berthold, B. Westermark, and C. Betsholtz. 1995. Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. The EMBO journal. 14:1590-1598.
Perng, M.D., L. Cairns, I.P. van den, A. Prescott, A.M. Hutcheson, and R.A. Quinlan. 1999. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. Journal of cell science. 112 ( Pt 13):2099-2112.
Perng, M.D., S.F. Wen, T. Gibbon, J. Middeldorp, J. Sluijs, E.M. Hol, and R.A. Quinlan. 2008. Glial fibrillary acidic protein filaments can tolerate the incorporation of assembly-compromised GFAP-delta, but with consequences for filament organization and alphaB-crystallin association. Molecular biology of the cell. 19:4521-4533.
Pollard, T.D., and J.A. Cooper. 1982. Methods to characterize actin filament networks. Methods in enzymology. 85 Pt B:211-233.
Pop, C., and G.S. Salvesen. 2009. Human caspases: activation, specificity, and regulation. The Journal of biological chemistry. 284:21777-21781.
Prust, M., J. Wang, H. Morizono, A. Messing, M. Brenner, E. Gordon, T. Hartka, A. Sokohl, R. Schiffmann, H. Gordish-Dressman, R. Albin, H. Amartino, K. Brockman, A. Dinopoulos, M.T. Dotti, D. Fain, R. Fernandez, J. Ferreira, J. Fleming, D. Gill, M. Griebel, H. Heilstedt, P. Kaplan, D. Lewis, M. Nakagawa, R. Pedersen, A. Reddy, Y. Sawaishi, M. Schneider, E. Sherr, Y. Takiyama, K. Wakabayashi, J.R. Gorospe, and A. Vanderver. 2011. GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology. 77:1287-1294.
Quinlan, R.A., M. Brenner, J.E. Goldman, and A. Messing. 2007. GFAP and its role in Alexander disease. Experimental cell research. 313:2077-2087.
Rao, L., D. Perez, and E. White. 1996. Lamin proteolysis facilitates nuclear events during apoptosis. The Journal of cell biology. 135:1441-1455.
Rodriguez, D., F. Gauthier, E. Bertini, M. Bugiani, M. Brenner, S. N'Guyen, C. Goizet, A. Gelot, R. Surtees, J.M. Pedespan, X. Hernandorena, M. Troncoso, G. Uziel, A. Messing, G. Ponsot, D. Pham-Dinh, A. Dautigny, and O. Boespflug-Tanguy. 2001. Infantile Alexander disease: spectrum of GFAP mutations and genotype-phenotype correlation. American journal of human genetics. 69:1134-1140.
ROY A. QUINLAN*, R.D.M.a.M.S. 1989. Expression in Escherichia coli of fragments of glial fibrillary acidic protein: characterization, assembly properties and paracrystal formation. Cell death and differentiation. 93:71-83.
Ruchaud, S., N. Korfali, P. Villa, T.J. Kottke, C. Dingwall, S.H. Kaufmann, and W.C. Earnshaw. 2002. Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. The EMBO journal. 21:1967-1977.
Russo LS Jr, A.A., Anderson PJ 1976. Alexander's Disease: A Report and Reappraisal. Neurology. 26:607-614.
Safer, D., and F.A. Pepe. 1980. Axial packing in light meromyosin paracrystals. Journal of molecular biology. 136:343-358.
Seifert, G., K. Schilling, and C. Steinhauser. 2006. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nature reviews. Neuroscience. 7:194-206.
Sihag, R.K., M. Inagaki, T. Yamaguchi, T.B. Shea, and H.C. Pant. 2007. Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Experimental cell research. 313:2098-2109.
Takahashi, A., E.S. Alnemri, Y.A. Lazebnik, T. Fernandes-Alnemri, G. Litwack, R.D. Moir, R.D. Goldman, G.G. Poirier, S.H. Kaufmann, and W.C. Earnshaw. 1996. Cleavage of lamin A by Mch2 alpha but not CPP32: multiple interleukin 1 beta-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proceedings of the National Academy of Sciences of the United States of America. 93:8395-8400.
Tang, G., M.D. Perng, S. Wilk, R. Quinlan, and J.E. Goldman. 2010. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition. The Journal of biological chemistry. 285:10527-10537.
Tang, G., Z. Xu, and J.E. Goldman. 2006. Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease. The Journal of biological chemistry. 281:38634-38643.
Tao, G.Z., D.H. Li, Q. Zhou, D.M. Toivola, P. Strnad, N. Sandesara, R.C. Cheung, A. Hong, and M.B. Omary. 2008. Monitoring of epithelial cell caspase activation via detection of durable keratin fragment formation. The Journal of pathology. 215:164-174.
Tomokane, N., T. Iwaki, J. Tateishi, A. Iwaki, and J.E. Goldman. 1991. Rosenthal fibers share epitopes with alpha B-crystallin, glial fibrillary acidic protein, and ubiquitin, but not with vimentin. Immunoelectron microscopy with colloidal gold. The American journal of pathology. 138:875-885.
van der Knaap, M.S., V. Ramesh, R. Schiffmann, S. Blaser, M. Kyllerman, A. Gholkar, D.W. Ellison, J.P. van der Voorn, S.J. van Dooren, C. Jakobs, F. Barkhof, and G.S. Salomons. 2006. Alexander disease: ventricular garlands and abnormalities of the medulla and spinal cord. Neurology. 66:494-498.
Alexander disease :
http://www.waisman.wisc.edu/alexander-disease/index.html
Human intermediate filament database:
http://www.interfil.org


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *