帳號:guest(3.144.84.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張子媛
作者(外文):Chang, Tzu-Yuan
論文名稱(中文):開發新穎α-酮醯胺衍生化合物做為拮抗胰臟腫瘤受酸性環境刺激誘發之Cathepsin S 蛋白酵素的功能性探討
論文名稱(外文):Functional characterization of novel α-ketoamide derivatives as potent inhibitors against cathepsin S induced by acidic peritumoral pH of pancreatic cancer
指導教授(中文):張文祥
藍忠昱
口試委員(中文):張文祥
藍忠昱
林俊成
林甫容
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:101080565
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:70
中文關鍵詞:Cathepsin Sα-酮醯胺酸性腫瘤微環境胰臟癌
相關次數:
  • 推薦推薦:0
  • 點閱點閱:50
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
Cathepsin S(又稱CTSS 或CatS)在腫瘤之進程及轉移中扮演了相當重要的角色。此蛋白酵素在惡性腫瘤細胞中的表達量會大幅提升,並分泌至細胞外降解細胞外基質,進而幫助癌細胞轉移。此外,因腫瘤之高醣解作用,腫瘤微環境常為酸性環境,此酸性環境對於癌細胞之進程及轉移亦有相當大之重要影響。綜合以上,我決定利用先前研發合成之α-酮醯胺衍生化合物作為CTSS 抑制劑並探討此化合物在酸性環境下之抗癌效果。藉由將胰臟癌細胞暴露於酸性培養環境(pH 6.7),觀察到細胞內累積之LC3+自噬空泡增加及自噬作用(cell autophagy)標誌蛋白Atg12-Atg5 表達量上升,顯示了當癌細胞處於酸性環境時會藉由細胞自噬作用適應並存活於此環境。此外,雖然在酸性環境癌細胞之生長速率會大幅降低,但生存之癌細胞的Cathepsin S 表達量會明顯提升,若再施與癌細胞CTSS 抑制劑CCL-RJW-58,則會導致癌細胞走向死亡,推測此CTSS 抑制劑能作為抗癌之潛力藥物。根據此實驗結果顯示,此α-酮醯胺CTSS 抑制劑CCL-RJW-58 在酸性腫瘤環境下能達到更好的抗癌效果,提供了胰臟癌病患一個新的標靶治療方向。
Content
Abstract (in English)……………………….……………………………….I
Abstract (in Chinese)……………………………..………………………..II
Acknowledgement..……………………………………………………….III
Contents…………………………………………………………………...IV
Index of Table……………………………………………………..…........VI
Index of Figures……………………………………………………..…...VII
CHAPTER 1 GENERAL INTRODUCTION
1.1 Pancreatic Cancer……………………....………………………………2
1.2 Tumor microenvironment……………………………………………..2
1.3 Cathepsin S……………………….…...………………………………...4
CHAPTER 2 MATERIALS AND METHODS
2.1 Materials
2.1.1 For cell culture…………………………………..………………..9
2.1.2 For MTT assay……………………………………...……...……..9
2.1.3 For RNA extraction and real-time PCR……………………….10
2.1.4 For western blot……………………………………………..…..10
2.1.5 For immunofluorescence (cultured cell lines), IF-IC……...….12
2.2 Methods
V
2.2.1 For cell cultures……….….……….………………………….…14
2.2.2 For MTT assay………………...……………...………......……..14
2.2.3 For real-time RT-PCR…………………..…………………..….15
2.2.4 For western blot………………………………,………………...16
2.2.5 For immunofluorescence (cultured cell lines), IF-IC……........17
CHAPTER 3 RESULTS
3.1 Selection of pancreatic cell lines and optimized pancreatic cell lines
and experimental conditions for acidification studies…...…………19
3.2 Acidification of cells………………………..………………………….20
3.3 The anticancer effects of high selective CTSS compound inhibitor
under acidic tumor microenvironment………………………....…...21
CHAPTER 4 DISCUSSION
4.1 Discussion……………………………………………………………...24
REFERENCES………………...………………………………………….27
TABLE……………………………………………………………………..34
FIGURES………………………………………………………………….36
APPENDIXES…………………………...………………………………...59
1. American Cancer Society: Cancer Facts & Figures 2014.
2. Strosberg, J.R., Cheema, A., Weber, J., Han, G., Coppola, D., and Kvols, L.K.
(2011). Prognostic validity of a novel American Joint Committee on Cancer
Staging Classification for pancreatic neuroendocrine tumors. The Journal of
Clinical Oncology 29, 3044-3049.
3. Tredan, O., Galmarini, C.M., Patel, K., and Tannock, I.F. (2007). Drug resistance
and the solid tumor microenvironment. The Journal of the National Cancer
Institute 99, 1441-1454.
4. Aznavoorian, S., Stracke, M.L., Krutzsch, H., Schiffmann, E., and Liotta, L.A.
(1990). Signal transduction for chemotaxis and haptotaxis by matrix molecules in
tumor cells. The Journal of Cell Biology 110, 1427-1438.
5. Li, H., Fan, X., and Houghton, J. (2007). Tumor microenvironment: the role of the
tumor stroma in cancer. The Journal of Cellular Biochemistry 101, 805-815.
6. Vaupel, P. (2004). Tumor microenvironmental physiology and its implications for
radiation oncology. Seminars in Radiation Oncology 14, 198-206.
7. Wike-Hooley, J.L., Haveman, J., and Reinhold, H.S. (1984). The relevance of
tumour pH to the treatment of malignant disease. Radiotherapy and Oncology 2,
343-366.
8. Meyer, K.A., Kammerling, E.M., Amtman, L., Koller, M., and Hoffman, S.J.
(1948). pH studies of malignant tissues in human being. Cancer Research 8,
513-518.
9. Warburg, O. (1956). On the origin of cancer cells. Science 123, 309-314.
10. Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding
29
the Warburg effect: the metabolic requirements of cell proliferation. Science 324,
1029-1033.
11. Jain, R.K. (1988). Determinants of tumor blood flow: a review. Cancer Research
48, 2461-2458.
12. Carmeliet, P., and Jain, R.K. (2000). Angiogenesis in cancer and other diseases.
Nature 407, 249-257.
13. Hashizume, H., Baluk, P., Morikawa, S., McLean, J.W., Thurston, G., Roberge, S.,
Jain, R.K., and McDonald, D.M. (2000). Openings between defective endothelial
cells explain tumor vessel leakiness. The American Journal of Pathology 156,
1363-1380.
14. Vaupel, P., Kallinowski, F., and Okunieff, P. (1989). Blood flow, oxygen and
nutrient supply, and metaboloc microenvironment of human tumors: a review.
Cancer Research 49, 6449-6465.
15. Harris, A.L. (2002). Hypoxia-a key regulatory factor in tumour growth. Nature
Reviews Cancer 2, 38-47.
16. Joyce, J.A., and Pollard, J.W. (2009). Microenvironmental regulation of
metastasis. Nature Reviews Cancer 9, 239-252.
17. Rawlings, N.D., Barrett, A.J., and Bateman, A. (2012). MEROPS: the database of
proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research 40,
343-350.
18. Rossi, A., Deveraux, Q., Turk, B., and Sali, A. (2005). Comprehensive search for
cysteine cathepsins in the human genome. Biological Chemistry 385, 363-372.
19. Saftig, P., and Klumperman, J. (2009). Lysosome biogenesis and lysosomal
30
membrane proteins: trafficking meets function. Nature Reviews Molecular Cell
Biology 10, 623-635.
20. Bromme, D. (2004). Production and activation of recombinant papain-like
cysteine proteases. Methods 32, 199-206.
21. Vasiljeva, O., Reinheckel, T., Peters, C., Turk, D., Turk, V., and Turk, B. (2007).
Emerging roles of cysteine cathepsins in disease and their potential as drug targets.
Current Pharmaceutical Design 13, 387-403.
22. Turk, B., Turk, D., and Turk, V. (2000). Lysosomal cysteine proteases: more than
scavengers. Biochimica et Biophysica Acta 1477, 98-111.
23. Fonovic, M., and Turk, B. (2014). Cysteine cathepsins and extracellular matrix
degradation. Biochimica et Biophysica Acta 1840, 2560-2570.
24. Honey, K., and Rudensky, A.Y. (2003). Lysosomal cysteine proteases regulate
antigen presentation. Nature Reviews Immunology 3, 472-482.
25. Brix, K., Dunkhorst, A., Mayer, K., and Jordans, S. (2008). Cysteine cathepsins:
cellular roadmap to different functions. Biochimie 90, 194-207.
26. Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., and Turk, D.
(2012). Cysteine cathepsins: from structure, function and regulation to new
frontiers. Biochimica et Biophysica Acta 1824, 68-88.
27. Mohamed, M.M., and Sloane, B.F. (2006). Cysteine cathepsins: multifunctional
enzymes in cancer. Nature Reviews Cancer 6, 764-775.
28. Turk, B., and Turk, V. (2009). Lysosomes as "suicide bags" in cell death: myth or
reality? The Journal of Biological Chemistry 284, 21783-21787.
29. Reiser, J., Adair, B., and Reinheckel, T. (2010). Specialized roles for cysteine
31
cathepsins in health and disease. The Journal of Clinical Investigation 120,
3421-3431.
30. Kos, J., Stabuc, B., Schweiger, A., Krasovec, M., Cimerman, N., Kopitar-Jerala,
N., and Vrhovec, I. (1997). Cathepsins B, H, and L and their inhibitors stefin A
and cystatin C in sera of melanoma patients. Clinical Cancer Research 3,
1815-1822.
31. Conus, S., and Simon, H.U. (2008). Cathepsins: key modulators of cell death and
inflammatory responses. Biochemical Pharmacology 76, 1374-1382.
32. Turk, V., Kos, J., and B., T. (2004). Cysteine cathepsins (proteases)-On the main
stage of cancer? Cancer Cell 5, 409-410.
33. Gocheva, V., and Joyce, J.A. (2007). Cysteine cathepsins and the cutting edge of
cancer invasion. Cell Cycle 6, 60-64.
34. Hirai, K., Yokoyama, M., Asano, G., and Tanaka, S. (1999). Expression of
cathepsin B and cystatin C in human colorectal cancer. Human Pathology 30,
680-686.
35. Fernandez, P.L., Farre, X., Nadal, A., Fernandez, E., Peiro, N., Sloane, B.F., Shi,
G.P., Chapman, H.A., Campo, E., and Cardesa, A. (2001). Expression of
cathepsins B and S in the progression of prostate carcinoma. International Journal
of Cancer 95, 51-55.
36. Ohta, T., Terada, T., Nagakawa, T., Tajima, H., Itoh, H., Fonseca, L., and
Miyazaki, I. (1994). Pancreatic trypsinogen and cathepsin B in human pancreatic
carcinomas and associated metastatic lesions. British Journal of Cancer 69,
152-156.
32
37. Thomssen, C., Schmitt, M., Goretzki, L., Oppelt, P., Pache, L., Dettmar, P.,
Jänicke, F., and Graeff, H. (1995). Prognostic value of the cysteine proteases
cathepsins B and cathepsin L in human breast cancer. Clinical Cancer Research 1,
741-746.
38. Kos, J., and Lah, T.T. (1998). Cysteine proteinases and their endogenous
inhibitors: target proteins for prognosis, diagnosis and therapy in cancer (review).
Oncology Reports 5, 1349–1361.
39. Lah, T.T., and Kos, J. (1998). Cysteine proteinases in cancer progression and their
clinical relevance for prognosis. Biological Chemistry 2, 125–130.
40. Colin, C., Voutsinos-Porche, B., Nanni, I., Fina, F., Metellus, P., Intagliata, D.,
Baeza, N., Bouvier, C., Delfino, C., Loundou, A. (2009). High expression of
cathepsin B and plasminogen activator inhibitor type-1 are strong predictors of
survival in glioblastomas. Acta Neuropathol 118, 745–754.
41. Simpson, J.A., Cheeseman, K.H., Smith, S.E., and Dean, R.T. (1988).
Free-radicalgenerationbycopper ionsandhydrogenperoxide stimulation by Hepes
buffer. The Journal of Biological Chemistry 254, 519-523.
42. Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered
questions. The Journal of Cell Science 118, 7-18.
43. Loos, B., Engelbrecht, A.M., Lockshin, R.A., Klionsky, D.J., and Zakeri, Z.
(2013). The variability of autophagy and cell death susceptibility: Unanswered
questions. Autophagy 9, 1270-1285.
44. Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011). The role of Atg proteins in
autophagosome formation. Annual Review of Cell and Developmental Biology 27,
33
107-132.
45. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T.,
Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian
homologue of yeast Apg8p, is localized in autophagosome membranes after
processing. The EMBO Journal 19, 5720-5728.
46. Bhoopathi, P., Chetty, C., Gujrati, M., Dinh, D.H., Rao, J.S., and Lakka, S. (2010).
Cathepsin B facilitates autophagy-mediated apoptosis in SPARC overexpressed
primitive neuroectodermal tumor cells. Cell Death and Differentiation 17,
1529-1539.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *