|
1. Noguchi, T., H. Inoue, and T. Tanaka, The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol chem, 1986. 261(29): p. 13807-12. 2. Noguchi, T., et al., The L-Type and R-Type Isozymes of Rat Pyruvate-Kinase Are Produced from a Single Gene by Use of Different Promoters. J Biol chem, 1987. 262(29): p. 14366-14371. 3. Carbonell, J., et al., Pyruvate kinase. Classes of regulatory isoenzymes in mammalian tissues. Eur J Biochem, 1973. 37(1): p. 148-56. 4. Yamada, K. and T. Noguchi, Regulation of pyruvate kinase M gene expression. Biochem Biophys Res Commun, 1999. 256(2): p. 257-62. 5. Brinck, U., et al., L-Pyruvate and M(2)-Pyruvate Kinase Expression in Renal-Cell Carcinomas and Their Metastases. Virchows Archiv-an International Journal of Pathology, 1994. 424(2): p. 177-185. 6. Domingo, M., et al., Immunohistological demonstration of pyruvate kinase isoenzyme type L in rat with monoclonal antibodies. J Histochem Cytochem, 1992. 40(5): p. 665-73. 7. Rodriguezhorche, P., et al., Comparative Kinetic-Behavior and Regulation by Fructose-1,6-Bisphosphate and Atp of Pyruvate-Kinase from Erythrocytes, Reticulocytes and Bone-Marrow Cel. Comp Biochem Physiol, Part B: Biochem Mol Biol, 1987. 87(3): p. 553-557. 8. Yamada, K. and T. Noguchi, Nutrient and hormonal regulation of pyruvate kinase gene expression. Biochem J, 1999. 337 ( Pt 1): p. 1-11. 9. Reinacher, M. and E. Eigenbrodt, Immunohistological demonstration of the same type of pyruvate kinase isoenzyme (M2-Pk) in tumors of chicken and rat. Virchows Arch B Cell Pathol Incl Mol Pathol, 1981. 37(1): p. 79-88. 10. Hacker, H.J., P. Steinberg, and P. Bannasch, Pyruvate kinase isoenzyme shift from L-type to M2-type is a late event in hepatocarcinogenesis induced in rats by a choline-deficient/DL-ethionine-supplemented diet. Carcinogenesis, 1998. 19(1): p. 99-107. 11. Saheki, S., et al., Hybrid Isozymes of Rat Pyruvate-Kinase - Their Subunit Structure and Developmental-Changes in Liver. Biochem Biophys Acta, 1978. 526(1): p. 116-128. 12. Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 3(10): p. 721-32. 13. Semenza, G.L., et al., Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol chem, 1994. 269(38): p. 23757-63. 14. Semenza, G.L., HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev, 2010. 20(1): p. 51-6. 15. Papandreou, I., et al., HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab, 2006. 3(3): p. 187-97. 16. Semenza, G.L., et al., Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol chem, 1996. 271(51): p. 32529-37. 17. Kim, J.W., et al., HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab, 2006. 3(3): p. 177-85. 18. Luo, W. and G.L. Semenza, Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget, 2011. 2(7): p. 551-6. 19. Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309-14. 20. Luo, W.B., et al., Pyruvate Kinase M2 Is a PHD3-Stimulated Coactivator for Hypoxia-Inducible Factor 1. Cell, 2011. 145(5): p. 732-744. 21. Mazurek, S., Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol, 2011. 43(7): p. 969-80. 22. Christofk, H.R., et al., The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008. 452(7184): p. 230-U74. 23. Mazurek, S., et al., Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol, 2005. 15(4): p. 300-8. 24. Ashizawa, K., et al., In vivo regulation of monomer-tetramer conversion of pyruvate kinase subtype M2 by glucose is mediated via fructose 1,6-bisphosphate. Journal of Biological Chemistry, 1991. 266(25): p. 16842-6. 25. Dombrauckas, J.D., B.D. Santarsiero, and A.D. Mesecar, Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry, 2005. 44(27): p. 9417-29. 26. Christofk, H.R., et al., Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 2008. 452(7184): p. 181-U27. 27. Chaneton, B., et al., Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature, 2012. 491(7424): p. 458. 28. Williams, R., et al., Differentiating a ligand's chemical requirements for allosteric interactions from those for protein binding. Phenylalanine inhibition of pyruvate kinase. Biochemistry, 2006. 45(17): p. 5421-9. 29. Hitosugi, T., et al., Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal, 2009. 2(97): p. ra73. 30. Anastasiou, D., et al., Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 2011. 334(6060): p. 1278-83. 31. Eigenbrodt, E., et al., Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit Rev Oncog, 1992. 3(1-2): p. 91-115. 32. Eigenbrodt, E., et al., Structural and Kinetic Differences between the M2-Type Pyruvate Kinases from Lung and Various Tumors. Biomedica Biochimica Acta, 1983. 42(11-1): p. S278-S282. 33. Marchut, E., M. Guminska, and T. Kedryna, The Inhibitory Effect of Various Fatty-Acids on Aerobic Glycolysis in Ehrlich Ascites Tumor-Cells. Acta Biochimica Polonica, 1986. 33(1): p. 7-16. 34. Keller, K.E., I.S. Tan, and Y.S. Lee, SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science, 2012. 338(6110): p. 1069-72. 35. Chen, N., et al., The oxygen sensor PHD3 limits glycolysis under hypoxia via direct binding to pyruvate kinase. Cell Res, 2011. 21(6): p. 983-6. 36. Spoden, G.A., et al., The SUMO-E3 Ligase PIAS3 Targets Pyruvate Kinase M2. Journal of Cellular Biochemistry, 2009. 107(2): p. 293-302. 37. Zhao, S., et al., Regulation of cellular metabolism by protein lysine acetylation. Science, 2010. 327(5968): p. 1000-4. 38. Lv, L., et al., Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth. Molecular Cell, 2011. 42(6): p. 719-730. 39. Hoshino, A., J.A. Hirst, and H. Fujii, Regulation of cell proliferation by interleukin-3-induced nuclear translocation of pyruvate kinase. J Biol Chem, 2007. 282(24): p. 17706-11. 40. Ignacak, J. and M.B. Stachurska, The dual activity of pyruvate kinase type M2 from chromatin extracts of neoplastic cells. Comp Biochem Physiol B Biochem Mol Biol, 2003. 134(3): p. 425-33. 41. Lee, J., et al., Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol, 2008. 40(5): p. 1043-54. 42. Gao, X., et al., Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell, 2012. 45(5): p. 598-609. 43. Wang, H.J., et al., JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proc Natl Acad Sci U S A, 2014. 111(1): p. 279-84. 44. Yang, W., et al., PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell, 2012. 150(4): p. 685-96. 45. Anastasiou, D., et al., Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol, 2012. 8(10): p. 839-47. 46. Arora, A. and S. Maiti, Differential biophysical behavior of human telomeric RNA and DNA quadruplex. J Phys Chem B, 2009. 113(30): p. 10515-20. 47. Gupta, V., et al., Dominant negative mutations affect oligomerization of human pyruvate kinase M2 isozyme and promote cellular growth and polyploidy. J Biol Chem, 2010. 285(22): p. 16864-73. 48. Iqbal, M.A., et al., Missense mutations in pyruvate kinase M2 promote cancer metabolism, oxidative endurance, anchorage independence, and tumor growth in a dominant negative manner. J Biol Chem, 2014. 289(12): p. 8098-105. 49. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallography, Pt A, 1997. 276: p. 307-326. 50. Murshudov, G.N., A.A. Vagin, and E.J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica Section D-Biological Crystallography, 1997. 53: p. 240-255. 51. Lebedev, A.A., A.A. Vagin, and G.N. Murshudov, Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr, Sect D: Biol Crystallogr, 2008. 64: p. 33-39. 52. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallogr, Sect D: Biol Crystallogr, 2004. 60: p. 2126-2132. 53. Bailey, S., The Ccp4 Suite - Programs for Protein Crystallography. Acta Crystallogr, Sect D: Biol Crystallogr, 1994. 50: p. 760-763. 54. Murshudov, G.N., et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr, Sect D: Biol Crystallogr, 2011. 67: p. 355-367. 55. Evrard, G.X., et al., Assessment of automatic ligand building in ARP/wARP. Acta Crystallogr, Sect D: Biol Crystallogr, 2007. 63: p. 108-117. 56. Laskowski, R.A., et al., Procheck - a Program to Check the Stereochemical Quality of Protein Structures. IJACT, 1993. 26: p. 283-291. 57. Larkin, M.A., et al., Clustal W and clustal X version 2.0. Bioinformatics, 2007. 23(21): p. 2947-2948. 58. Krissinel, E. and K. Henrick, Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 12 Pt 1): p. 2256-68. 59. DeLano, W.L., Use of PYMOL as a communications tool for molecular science. Abstracts of Papers of the American Chemical Society, 2004. 228: p. U313-U314. 60. Murshudov, G.N., et al., Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallographica Section D-Biological Crystallography, 1999. 55: p. 247-255. 61. Morgan, H.P., et al., M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation. Proc Natl Acad Sci U S A, 2013. 110(15): p. 5881-6.
|