帳號:guest(3.15.31.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江孟軒
作者(外文):Chiang, Meng-Hsuan
論文名稱(中文):利用基因表現交集來製造果蠅神經網路的操控工具
論文名稱(外文):Generation of Genetic Tools by Gene Expression Intersection for Manipulating Neuronal Circuits in the Drosophila Brain
指導教授(中文):江安世
指導教授(外文):Chiang, Ann-Shyn
口試委員(中文):傅在峰
羅中泉
口試委員(外文):Fu, Tsai-Feng
Lo, Chung-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:101080562
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:54
中文關鍵詞:交集反應資料庫轉錄酶增強子陷阱果蠅
外文關鍵詞:intersectiondatabaseflippaseFINGRdrosophila
相關次數:
  • 推薦推薦:0
  • 點閱點閱:212
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
調控特定腦區的腦神經細胞在研究腦神經迴路與動物行為之間扮演很重要的一個角色,在果蠅中,GAL4-UAS這個系統是最常用來調控基因的工具。盡管已經有上千種表達在不同位置的GAL4被製作出來,但他們表達的位置仍不夠專一用以進行特定神經的調控。現在,一個用來限縮GAL4表達區域的系統被發展出來,其名為FINGR(FLP-induced intersectional GAL80/GAL4 repression)系統。FINGR包含了兩大部分,第一個是約莫1000個能在細胞中持續表達的增強子陷阱翻轉酶;另一個是帶有GAL80的翻轉酶識別位置的序列,我們稱之為"flip-out"的工具。雖然如此,FINGR系統仍面對到兩個很重要的障礙,其一為這1000個增強子陷阱翻轉酶所表達的位置仍是未知的;其二,缺乏用簡單的方法分析計算增強子陷阱翻轉酶與GAL4共同表達交集的位置。所以,在這篇文章中,我們全面性的分析這1000個增強子陷阱翻轉酶的表達位置並將結果分門別類地輸入FlyDriver。在FlyDriver網站上,可以提供使用者分析增強子陷阱翻轉酶與GAL4共同表達交集的位置。為了使使用者更方便、更容易成功的製作轉基因果蠅,我們提供一個預測增強子陷阱翻轉酶與GAL4共同表達交集位置的標準程序流程。利用以上調控的工具,我們希望能提供神經科學家理解腦袋是如何編排與處理複雜的行為。
Transgenic manipulation of target neurons is increasingly important for understanding how brain circuits control complex behaviors. In Drosophila, the GAL4–upstream activating sequence (UAS) binary system is widely used to manipulate functions of gene expression and neuronal activity. Though thousands of GAL4 lines are available, their expression patterns are usually not specific enough to manipulate target neurons. The FLP-induced intersectional GAL80/GAL4 repression (FINGR) system consisting of tissue-specific enhancer-trap Flippase lines and a FRT-dependent GAL80 “flip-out” construct has recently been developed to narrow down the GAL4 expressed pattern. Nevertheless, application of FINGR system faces two obstacles: First, the numbers of expression patterns of enhancer-trap Flippase lines are limited. Second, there are no easy ways to analyze GAL4/FLP intersection. Here, I comprehensively examined nearly 1000 FLP expression patterns and cataloged these results into a driver database, called FlyDriver. The FlyDriver allows users to predict GAL4/FLP intersection. As a proof of concept, I have established a standard operation procedure for predicting GAL4/FLP intersection before generating the genetic flies through combining several transgenes into the same fly. My study will help neuroscientists to generate circuit controlling tool for understanding how the brain orchestrates complex behavior in Drosophila.
目錄
致謝 1
中文摘要 2
Abstract 3
1. Introduction 4
2. Materials and Methods 7
2.1 Fly Stocks 7
2.2 Sample Preparation and Immunohistochemistry 7
2.3 Confocal Microscopy and Image Processing 9
3. Results 10
3.1 The Strategy of intersection tool building procedure 10
3.2 Screening ET-FLP lines 10
3.3 Classification of ET-FLP lines pattern 11
3.4 Defined region stable pattern from ET-FLP lines 12
3.5 Search the predict expression pattern from FlyCircuit. 13
3.6 Demonstrate the Mushroom body α/β lobe by using intersection tools 13
4. Discussion 16
5. References 19
6. Figures and Figure legends 21
7. Tables 38
8. Appendix Figures 42
1. Bohm, R.A., Welch, W.P., Goodnight, L.K., Cox, L.W., Henry, L.G., Gunter, T.C., Bao, H., and Zhang, B. (2010). A genetic mosaic approach for neural circuit mapping in Drosophila. Proc. Natl. Acad. Sci. USA 107, 16378-16383.
2. Luo, L., Callaway, E.M., and Svoboda, K. (2008). Genetic dissection of neural circuits. Neuron 57, 634-660.
3. White, B.H., and Peabody, N.C. (2009). Neurotrapping: cellular screens to identify the neural substrates of behavior in Drosophila. Front. Mol. Neurosci. 2, 20.
4. Jenett, A., Rubin, G.M., Ngo, T.T., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B.D., Cavallaro, A., Hall, D., Jeter, J., et al. (2012). A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991-1001.
5. Golic, K.G. (1991). Site-Specific Recombination between Homologous Chromosomes in Drosophila. Science 252, 958-961.
6. Gordon, M.D., and Scott, K. (2009). Motor control in a Drosophila taste circuit. Neuron 61, 373-384.
7. Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., et al. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1-11.
8. Tanaka, N.K., Tanimoto, H., and Ito, K. (2008). Neuronal assemblies of the Drosophila mushroom body. J. Comp. Neurol. 508, 711-755.
9. Chen, C.C., Wu, J.K., Lin, H.W., Pai, T.P., Fu, T.F., Wu, C.L., Tully, T., and Chiang, A.S. (2012). Visualizing long-term memory formation in two neurons of the Drosophila brain. Science 335, 678-685.
10. Huang, C., Zheng, X., Zhao, H., Li, M., Wang, P., Xie, Z., Wang, L., and Zhong, Y. (2012). A permissive role of mushroom body alpha/beta core neurons in long-term memory consolidation in Drosophila. Curr. Biol. 22, 1981-1989.
11. Nern, A., Pfeiffer, B.D., Svoboda, K., and Rubin, G.M. (2011). Multiple new site-specific recombinases for use in manipulating animal genomes. Proc. Natl. Acad. Sci. USA 108, 14198-14203.
12. Pelletier, J., and Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325.
13. Alekseyenko, O.V., Chan, Y.B., Li, R., and Kravitz, E.A. (2013). Single dopaminergic neurons that modulate aggression in Drosophila. Proc. Natl. Acad. Sci. USA 110, 6151-6156.
14. Lin, C.Y., Chuang, C.C., Hua, T.E., Chen, C.C., Dickson, B.J., Greenspan, R.J., and Chiang, A.S. (2013). A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. Cell Rep. 3, 1739-1753.
(此全文未開放授權)
電子全文
中文摘要
英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *