帳號:guest(18.117.101.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):聶瑜瑾
作者(外文):Nieh, yu-chin
論文名稱(中文):抑制肺癌細胞之核醣5磷酸異構酵素A表現量藉由誘導自嗜作用、細胞凋亡、細胞衰老作用導致減緩細胞生長與集落形成之研究
論文名稱(外文):Suppression of Ribose-5-phosphate Isomerase A Reduces Cell Proliferation and Colony Formation Ability by Induction of Autophagy, Apoptosis and Cellular Senescence in Lung Cancer Cells
指導教授(中文):汪宏達
口試委員(中文):喻秋華
周裕珽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:101080555
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:49
中文關鍵詞:肺癌自噬作用細胞凋亡
外文關鍵詞:lung cancerautophagyapoptosis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:182
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肺癌在全世界位居所有癌症中致死率最高之疾病。我們最近研究結果發現在肝癌病人腫瘤中,人類的核糖-5-磷酸異構酶A (RPIA)會過量表現,且RPIA的表現量可調控腫瘤的生成。然而RPIA在肺癌中所扮演的角色並不清楚。本篇論文中,我發現抑制RPIA表現量會導致肺癌細胞生長減緩,並誘發自噬作用與細胞凋亡以及細胞衰老作用產生。
首先,我們在肺癌病人癌化組織切片中發現相對於周邊較正常組織相比,其RPIA有過度表現的現象。因此,我們利用慢病毒感染方式感染於A549肺癌細胞中,分別建立抑制RPIA表現的兩株獨立細胞株;在這兩株獨立細胞株中,發現細胞型態會產生自噬泡,且會增加acridine orange 呈色,並導致自噬體的堆積,產生GFP-LC3 的小點;而在分子機轉中,發現這兩株RPIA抑制表現的細胞株中,會促使LC3-Ⅱ增加與p62的減少,這些現象證明在A549細胞抑制RPIA會活化自噬作用的產生。另外,發現在A549抑制RPIA表現,會造成Bax、cleaved PARP、caspase 3蛋白質表現量增加,這些說明抑制RPIA表現會活化粒線體所誘導的細胞凋亡機制。再者,在肺癌細胞中抑制RPIA會引發細胞衰老且增加p21的表現。最重要的是在肺癌細胞中抑制RPIA會導致活性氧化物(Reactive Oxygen Species)的增加;當在RPIA抑制的A549細胞中,加入ROS的清除劑N-乙酰基-L-半胱氨酸(NAC),會降低ROS的量,並且可逆轉由於抑制RPIA所造成的自噬作用、細胞凋亡與細胞衰老現象的分子蛋白的表現情形。
我們的研究發現在A549肺癌細胞中抑制RPIA表現,會誘導活性氧物種的增加,並導致自噬作用、細胞凋亡、細胞衰老之作用產生。我們的研究闡明抑制RPIA表現量可作為一個新興治療肺癌的策略。
Lung cancer is a leading cause of cancer death worldwide. Our recent study showed that human ribose-5-phosphate isomerase A (RPIA) regulates tumorigenesis in liver cancer. However, the role of RPIA in lung cancer is not known. Here we report that knockdown of RPIA diminishes lung cancer proliferation by the activation of autophagy, apoptosis, and cellular senescence.
First, we detected RPIA up-regulation in the human lung cancer versus adjust normal tissue by IHC using tissue array. Therefore we established two independent lentiviral shRPIA knockdown cell lines in A549 lung cancer cells. Both RPIA knockdown lung cancer cell lines in cellular level displayed autophagic vacuoles, enhanced acridine orange staining, GFP-LC3 punctae, and accumulated autophagosomes and in molecular level both showed elevated levels of LC3-Ⅱ and reduced levels of p62, which together suggests RPIA knockdown activates autophagy in A549 cells. In addition, RPIA knockdown in A549 cells induced mitochondria mediated apoptosis by exhibiting increased levels of Bax, cleaved PARP and caspase-3 and elevated levels of apoptotic cells. Moreover, RPIA knockdown triggered cellular senescence and increased levels of p21 in A549 cells. Importantly, RPIA knockdown increased reactive oxygen species (ROS) levels in A549 cells. Treatment of ROS scavenger N-acetyl-L-cysteine (NAC) reverts the activation of autophagy ,apoptosis and cellular senescence by RPIA knockdown in A549 cells. In conclusion, RPIA knockdown induces oxidative stress to activate autophagy, apoptosis, and cellular senescence in lung cancer cells. Our study sheds new light on RPIA suppression in lung cancer therapy.
Table of contents
Abstract II
中文摘要 III
誌謝……………..…………………………………………………………………….V
Table of contents…………………………………………………………………... VII
Chapter 1 Introduction 1
1-1 Lung cancer 1
1-2 Lung cancer, aging, and metabolism 1
1-3 Programmed cell death pathways in lung cancer 2
1-3-1 Apoptosis 2
1-3-2 Autophagy 3
1-3-3 Cellular senescence 4
1-4 Lung cancer and ROS 5
1-5 Aims 6
Chapter 2 Materials and Methods 7
2-1 DNA plasmid generation 7
2-2 Cell culture 7
2-3 Immunohistochemistry 8
2-4 Lentiviral Infection 8
2-5 RNA extraction and Quantitative Real-time PCR 9
2-6 Protein extraction and Western blot 10
2-7 Colony formation assay 11
2-8 Water-Soluble Tetrazolium Salt-1 (WST-1) 11
2-9 Transmission electron microscopy (TEM) 12
2-10 Acridine orange staining 12
2-11 Apoptosis cells detection 12
2-12 Senescence assay 13
2-13 Reactive Oxygen Species (ROS) cells detection 13
2-14 Statistical analysis 14
Chapter 3 Results 15
3-1 Increased RPIA expression was detected in the tumor biopsy of lung adenocarcinoma patients 15
3-2 Establishment of lentiviral-shRNA RPIA knockdown cell lines in A549 lung cancer cells 15
3-3 Knockdown of RPIA decreased the oncogenicity in A549 cells. 16
3-4 Knockdown of RPIA induced mitochondria-mediated apoptosis in A549 cells. 17
3-5 Knockdown of RPIA induces autophagy in A549 lung cancer cells 18
3-6 Inhibition of autophagy by autophagy inhibitors 3-MA and CQ enhances apoptosis induced by shRPIA in A549 cells. 19
3-7 Knockdown of RPIA triggered cellular senescence and enhanced p21 expression levels in A549 cells 19
3-8 Reactive oxygen species induced by shRPIA caused autophagy and apoptosis in A549 cells 20
Chapter 4 Discussion 22

Table 1. Q-PCR primer 26
Table 2. Antibodies list 26
Figure 1. Increased RPIA expression is detected in the tumor biopsy of lung adenocarcinoma patients. 27
Figure 2. The mRNA and protein expression levels of RPIA were reduced in the RPIA shRNA knockdown A549 lung cancer cells. 29
Figure 3. Knockdown of RPIA decreased the oncogenicity of A549 cells. 31
Figure 4. Knockdown of RPIA induced mitochondria mediated apoptosis in A549 cells. 33
Figure 5. Knockdown of RPIA induced autophagosome formation, reduced p62 and increased LC3-Ⅱ protein levels in A549 cells. 35
Figure 6. The appearance of autophagosome formation in shRPIA knockdown A549 cells by transmission electron microscopy. 38
Figure 7. Knockdown of RPIA triggered cell senescence and enhanced p21 expression levels in A549 cells. 40
Figure 8. The increased levels of reactive oxygen species induced by shRPIA knockdown mediate the expression of autophagy, apoptosis and cellular senescence related proteins in the A549 cells. 42
Figure 9. Summary 44
Appendix…………………………………………………………………………….45
References………... …..49


Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nature reviews Cancer 9: 400-414

Bennecke M, Kriegl L, Bajbouj M, Retzlaff K, Robine S, Jung A, Arkan MC, Kirchner T, Greten FR (2010) Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer cell 18: 135-146

Bensaad K, Vousden KH (2007) p53: new roles in metabolism. Trends in cell biology 17: 286-291

Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods in enzymology 452: 181-197

Campisi J (2013) Aging, cellular senescence, and cancer. Annual review of physiology 75: 685-705

Chou YT, Hsieh CH, Chiou SH, Hsu CF, Kao YR, Lee CC, Chung CH, Wang YH, Hsu HS, Pang ST, Shieh YS, Wu CW (2012) CITED2 functions as a molecular switch of cytokine-induced proliferation and quiescence. Cell death and differentiation 19: 2015-2028

Couraud S, Zalcman G, Milleron B, Morin F, Souquet PJ (2012) Lung cancer in never smokers--a review. European journal of cancer 48: 1299-1311

Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27: 6245-6251

Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ, Mak TW, Wu M, Yang X (2013) TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nature cell biology 15: 991-1000

Eum KH, Lee M (2011) Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Molecular and cellular biochemistry 348: 61-68

Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448: 767-774

Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays : news and reviews in molecular, cellular and developmental biology 28: 1091-1101

Ghafourifar P, Mousavizadeh K, Parihar MS, Nazarewicz RR, Parihar A, Zenebe WJ (2008) Mitochondria in multiple sclerosis. Frontiers in bioscience : a journal and virtual library 13: 3116-3126

Helmbold H, Deppert W, Bohn W (2006) Regulation of cellular senescence by Rb2/p130. Oncogene 25: 5257-5262

Hoeijmakers JH (2009) DNA damage, aging, and cancer. The New England journal of medicine 361: 1475-1485

Huck JH, Verhoeven NM, Struys EA, Salomons GS, Jakobs C, van der Knaap MS (2004) Ribose-5-phosphate isomerase deficiency: new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. American journal of human genetics 74: 745-751

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA: a cancer journal for clinicians 61: 69-90

Lin L, Shen J, Ainsley CG, Solberg TD, McDonough JE (2014) Implementation of an improved dose-per-MU model for double-scattered proton beams to address interbeamline modulation width variability. Journal of applied clinical medical physics / American College of Medical Physics 15: 4748

Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola RS, Karantza-Wadsworth V, White E (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062-1075

Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell proliferation 45: 487-498

Puissant A, Fenouille N, Auberger P (2012) When autophagy meets cancer through p62/SQSTM1. American journal of cancer research 2: 397-413

Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, Jung S, Jung YK (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nature communications 4: 2300

Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26: 3291-3310

Rodier F, Campisi J (2011) Four faces of cellular senescence. The Journal of cell biology 192: 547-556

Shen J, Jung Y, Disa AS, Walker FJ, Ahn CH, Cha JJ (2014) Synthesis of SnTe Nanoplates with {100} and {111} Surfaces. Nano letters

Sritharan N (2013) Genomic landscape of non-small-cell lung cancer in smokers and never-smokers. Thorax

Tanida I, Waguri S (2010) Measurement of autophagy in cells and tissues. Methods in molecular biology 648: 193-214

Vaziri H, Benchimol S (1999) Alternative pathways for the extension of cellular life span: inactivation of p53/pRb and expression of telomerase. Oncogene 18: 7676-7680

Wamelink MM, Struys EA, Jakobs C (2008) The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. Journal of inherited metabolic disease 31: 703-717

Wang CT, Chen YC, Wang YY, Huang MH, Yen TL, Li H, Liang CJ, Sang TK, Ciou SC, Yuh CH, Wang CY, Brummel TJ, Wang HD (2012) Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging cell 11: 93-103

Wang Y, Singh R, Massey AC, Kane SS, Kaushik S, Grant T, Xiang Y, Cuervo AM, Czaja MJ (2008) Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus. The Journal of biological chemistry 283: 4766-4777

Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Molecular cancer therapeutics 10: 1533-1541

Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J, Hezel AF, Perry SR, Hu J, Gan B, Xiao Y, Asara JM, Weissleder R, Wang YA, Chin L, Cantley LC, DePinho RA (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149: 656-670

Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, Baehrecke EH, Lenardo M (2006) Autophagic programmed cell death by selective catalase degradation. Proceedings of the National Academy of Sciences of the United States of America 103: 4952-4957

Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nature reviews Molecular cell biology 12: 21-35


(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *