|
1. Riley, P. A. (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. International journal of radiation biology 65, 27-33 2. Walker, M. D., Strike, T. A., and Sheline, G. E. (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. International journal of radiation oncology, biology, physics 5, 1725-1731 3. Monje, M. L., Mizumatsu, S., Fike, J. R., and Palmer, T. D. (2002) Irradiation induces neural precursor-cell dysfunction. Nature medicine 8, 955-962 4. Posner, J. B. (1992) Management of brain metastases. Revue neurologique 148, 477-487 5. Roman, D. D., and Sperduto, P. W. (1995) Neuropsychological effects of cranial radiation: current knowledge and future directions. International journal of radiation oncology, biology, physics 31, 983-998 6. Abayomi, O. K. (2002) Pathogenesis of cognitive decline following therapeutic irradiation for head and neck tumors. Acta oncologica 41, 346-351 7. Madsen, T. M., Kristjansen, P. E., Bolwig, T. G., and Wortwein, G. (2003) Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience 119, 635-642 8. Mizumatsu, S., Monje, M. L., Morhardt, D. R., Rola, R., Palmer, T. D., and Fike, J. R. (2003) Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer research 63, 4021-4027 9. Rola, R., Raber, J., Rizk, A., Otsuka, S., VandenBerg, S. R., Morhardt, D. R., and Fike, J. R. (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Experimental neurology 188, 316-330 10. Fike, J. R., Rola, R., and Limoli, C. L. (2007) Radiation response of neural precursor cells. Neurosurgery clinics of North America 18, 115-127, x 11. Tan, Y. F., Rosenzweig, S., Jaffray, D., and Wojtowicz, J. M. (2011) Depletion of new neurons by image guided irradiation. Frontiers in neuroscience 5, 59 12. Milner, B. (1972) Disorders of learning and memory after temporal lobe lesions in man. Clinical neurosurgery 19, 421-446 13. Scoville, W. B., and Milner, B. (1957) Loss of recent memory after bilateral hippocampal lesions. Journal of neurology, neurosurgery, and psychiatry 20, 11-21 14. Squire, L. R. (1986) Mechanisms of memory. Science 232, 1612-1619 15. Bird, C. M., and Burgess, N. (2008) The hippocampus and memory: insights from spatial processing. Nature reviews. Neuroscience 9, 182-194 16. Braak, H., Braak, E., and Bohl, J. (1993) Staging of Alzheimer-related cortical destruction. European neurology 33, 403-408 17. Arimura, N., and Kaibuchi, K. (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nature reviews. Neuroscience 8, 194-205 18. Wallace, D. C. (2001) A mitochondrial paradigm for degenerative diseases and ageing. Novartis Foundation symposium 235, 247-263; discussion 263-246 19. Galloway, C. A., and Yoon, Y. (2012) Perspectives on: SGP symposium on mitochondrial physiology and medicine: what comes first, misshape or dysfunction? The view from metabolic excess. The Journal of general physiology 139, 455-463 20. Reichert, A. S., and Neupert, W. (2004) Mitochondriomics or what makes us breathe. Trends in genetics : TIG 20, 555-562 21. Fernie, A. R., Carrari, F., and Sweetlove, L. J. (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current opinion in plant biology 7, 254-261 22. Stock, D., Leslie, A. G., and Walker, J. E. (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700-1705 23. Okuno, D., Iino, R., and Noji, H. (2011) Rotation and structure of FoF1-ATP synthase. Journal of biochemistry 149, 655-664 24. Murphy, M. P. (2009) How mitochondria produce reactive oxygen species. The Biochemical journal 417, 1-13 25. Orrenius, S., Gogvadze, V., and Zhivotovsky, B. (2007) Mitochondrial oxidative stress: implications for cell death. Annual review of pharmacology and toxicology 47, 143-183 26. Koopman, W. J., Nijtmans, L. G., Dieteren, C. E., Roestenberg, P., Valsecchi, F., Smeitink, J. A., and Willems, P. H. (2010) Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxidants & redox signaling 12, 1431-1470 27. Han, D., Antunes, F., Canali, R., Rettori, D., and Cadenas, E. (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. The Journal of biological chemistry 278, 5557-5563 28. Zelko, I. N., Mariani, T. J., and Folz, R. J. (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free radical biology & medicine 33, 337-349 29. Mills, G. C. (1957) Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. The Journal of biological chemistry 229, 189-197 30. Waris, G., and Ahsan, H. (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. Journal of carcinogenesis 5, 14 31. Uttara, B., Singh, A. V., Zamboni, P., and Mahajan, R. T. (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current neuropharmacology 7, 65-74 32. Liochev, S. I. (2013) Reactive oxygen species and the free radical theory of aging. Free radical biology & medicine 60, 1-4 33. Yakes, F. M., and Van Houten, B. (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proceedings of the National Academy of Sciences of the United States of America 94, 514-519 34. Chen, H., Vermulst, M., Wang, Y. E., Chomyn, A., Prolla, T. A., McCaffery, J. M., and Chan, D. C. (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141, 280-289 35. Ono, T., Isobe, K., Nakada, K., and Hayashi, J. I. (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nature genetics 28, 272-275 36. Fritz, S., Rapaport, D., Klanner, E., Neupert, W., and Westermann, B. (2001) Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. The Journal of cell biology 152, 683-692 37. Rojo, M., Legros, F., Chateau, D., and Lombes, A. (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. Journal of cell science 115, 1663-1674 38. Santel, A., and Fuller, M. T. (2001) Control of mitochondrial morphology by a human mitofusin. Journal of cell science 114, 867-874 39. Cipolat, S., Martins de Brito, O., Dal Zilio, B., and Scorrano, L. (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proceedings of the National Academy of Sciences of the United States of America 101, 15927-15932 40. Smirnova, E., Shurland, D. L., Ryazantsev, S. N., and van der Bliek, A. M. (1998) A human dynamin-related protein controls the distribution of mitochondria. The Journal of cell biology 143, 351-358 41. Zhang, Y., and Chan, D. C. (2007) Structural basis for recruitment of mitochondrial fission complexes by Fis1. Proceedings of the National Academy of Sciences of the United States of America 104, 18526-18530 42. Otera, H., Wang, C., Cleland, M. M., Setoguchi, K., Yokota, S., Youle, R. J., and Mihara, K. (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. The Journal of cell biology 191, 1141-1158 43. Nicholls, D. G., and Budd, S. L. (2000) Mitochondria and neuronal survival. Physiological reviews 80, 315-360 44. Sheng, Z. H., and Cai, Q. (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nature reviews. Neuroscience 13, 77-93 45. Kang, J. S., Tian, J. H., Pan, P. Y., Zald, P., Li, C., Deng, C., and Sheng, Z. H. (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132, 137-148 46. Hollenbeck, P. J., and Saxton, W. M. (2005) The axonal transport of mitochondria. Journal of cell science 118, 5411-5419 47. Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A., and Hirokawa, N. (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147-1158 48. Pilling, A. D., Horiuchi, D., Lively, C. M., and Saxton, W. M. (2006) Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Molecular biology of the cell 17, 2057-2068 49. Cai, Q., Gerwin, C., and Sheng, Z. H. (2005) Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. The Journal of cell biology 170, 959-969 50. Kanai, Y., Okada, Y., Tanaka, Y., Harada, A., Terada, S., and Hirokawa, N. (2000) KIF5C, a novel neuronal kinesin enriched in motor neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 6374-6384 51. Burbulla, L. F., Krebiehl, G., and Kruger, R. (2010) Balance is the challenge--the impact of mitochondrial dynamics in Parkinson's disease. European journal of clinical investigation 40, 1048-1060 52. Selkoe, D. J. (2001) Alzheimer's disease: genes, proteins, and therapy. Physiological reviews 81, 741-766 53. Druzhyna, N. M., Wilson, G. L., and LeDoux, S. P. (2008) Mitochondrial DNA repair in aging and disease. Mechanisms of ageing and development 129, 383-390 54. Taylor, R. W., and Turnbull, D. M. (2005) Mitochondrial DNA mutations in human disease. Nature reviews. Genetics 6, 389-402 55. Detmer, S. A., Vande Velde, C., Cleveland, D. W., and Chan, D. C. (2008) Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. Human molecular genetics 17, 367-375 56. Huang, H. C., and Jiang, Z. F. (2009) Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer's disease. Journal of Alzheimer's disease : JAD 16, 15-27 57. Yin, Y. I., Bassit, B., Zhu, L., Yang, X., Wang, C., and Li, Y. M. (2007) {gamma}-Secretase Substrate Concentration Modulates the Abeta42/Abeta40 Ratio: IMPLICATIONS FOR ALZHEIMER DISEASE. The Journal of biological chemistry 282, 23639-23644 58. Schmidt, M., Sachse, C., Richter, W., Xu, C., Fandrich, M., and Grigorieff, N. (2009) Comparison of Alzheimer Abeta(1-40) and Abeta(1-42) amyloid fibrils reveals similar protofilament structures. Proceedings of the National Academy of Sciences of the United States of America 106, 19813-19818 59. Song, J., Park, K. A., Lee, W. T., and Lee, J. E. (2014) Apoptosis signal regulating kinase 1 (ASK1): potential as a therapeutic target for Alzheimer's disease. International journal of molecular sciences 15, 2119-2129 60. Mines, M. A., Beurel, E., and Jope, R. S. (2011) Regulation of cell survival mechanisms in Alzheimer's disease by glycogen synthase kinase-3. International journal of Alzheimer's disease 2011, 861072 61. Rui, Y., Gu, J., Yu, K., Hartzell, H. C., and Zheng, J. Q. (2010) Inhibition of AMPA receptor trafficking at hippocampal synapses by beta-amyloid oligomers: the mitochondrial contribution. Molecular brain 3, 10 62. Levine, B., and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental cell 6, 463-477 63. Deretic, V., Saitoh, T., and Akira, S. (2013) Autophagy in infection, inflammation and immunity. Nature reviews. Immunology 13, 722-737 64. Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., and Yamamoto, A. (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature cell biology 11, 1433-1437 65. Yla-Anttila, P., Vihinen, H., Jokitalo, E., and Eskelinen, E. L. (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180-1185 66. Mizushima, N. (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Current opinion in cell biology 22, 132-139 67. Itakura, E., and Mizushima, N. (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764-776 68. Nakatogawa, H., Suzuki, K., Kamada, Y., and Ohsumi, Y. (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature reviews. Molecular cell biology 10, 458-467 69. Weidberg, H., Shvets, E., Shpilka, T., Shimron, F., Shinder, V., and Elazar, Z. (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. The EMBO journal 29, 1792-1802 70. Youle, R. J., and Narendra, D. P. (2011) Mechanisms of mitophagy. Nature reviews. Molecular cell biology 12, 9-14 71. Youle, R. J., and van der Bliek, A. M. (2012) Mitochondrial fission, fusion, and stress. Science 337, 1062-1065 72. Ashrafi, G., and Schwarz, T. L. (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell death and differentiation 20, 31-42 73. Twig, G., Hyde, B., and Shirihai, O. S. (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochimica et biophysica acta 1777, 1092-1097 74. Dagda, R. K., Cherra, S. J., 3rd, Kulich, S. M., Tandon, A., Park, D., and Chu, C. T. (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. The Journal of biological chemistry 284, 13843-13855 75. Tanaka, A., Cleland, M. M., Xu, S., Narendra, D. P., Suen, D. F., Karbowski, M., and Youle, R. J. (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. The Journal of cell biology 191, 1367-1380 76. Monje, M. (2008) Cranial radiation therapy and damage to hippocampal neurogenesis. Developmental disabilities research reviews 14, 238-242 77. Park, H. S., Seong, K. M., Kim, J. Y., Kim, C. S., Yang, K. H., Jin, Y. W., and Nam, S. Y. (2013) Chronic low-dose radiation inhibits the cells death by cytotoxic high-dose radiation increasing the level of AKT and acinus proteins via NF-kappaB activation. International journal of radiation biology 89, 371-377 78. Luckey, T. D. (2006) Radiation hormesis: the good, the bad, and the ugly. Dose-response : a publication of International Hormesis Society 4, 169-190 79. Pollycove, M., and Feinendegen, L. E. (2003) Radiation-induced versus endogenous DNA damage: possible effect of inducible protective responses in mitigating endogenous damage. Human & experimental toxicology 22, 290-306; discussion 307, 315-297, 319-223 80. Wei, L. C., Ding, Y. X., Liu, Y. H., Duan, L., Bai, Y., Shi, M., and Chen, L. W. (2012) Low-dose radiation stimulates Wnt/beta-catenin signaling, neural stem cell proliferation and neurogenesis of the mouse hippocampus in vitro and in vivo. Current Alzheimer research 9, 278-289
|