帳號:guest(18.119.125.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林涵軒
論文名稱(中文):斑馬魚抗肝癌藥物篩選平台之建構
論文名稱(外文):Establishment of Anti-HCC Drug Screening Platform in Zebrafish
指導教授(中文):汪宏達
喻秋華
口試委員(中文):謝興邦
徐祖安
汪宏達
喻秋華
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:101080546
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:59
中文關鍵詞:斑馬魚藥物篩選平台
相關次數:
  • 推薦推薦:0
  • 點閱點閱:83
  • 評分評分:*****
  • 下載下載:23
  • 收藏收藏:0
肝癌是台灣癌症死亡排名的第二名,目前最常見的肝癌類型為肝細胞癌(Hepatocellular carcinoma, HCC),肝細胞癌約佔原發性肝癌的90%。肝細胞癌的發生是多步驟、多因素協同作用的結果,正常肝臟歷經慢性發炎、脂肪肝、肝纖維化、肝硬化,肝細胞增生、最後發展成惡性腫瘤。蕾莎瓦(Nexavar,學名Sorafenib)是目前唯一被FDA所核准的標靶藥物,用來治療晚期肝細胞癌,可以抑制癌細胞成長且延長病人的壽命,但非適用全部病人,且其他用於治療肝癌的藥物成效不彰,因此迫切需要發展新的治療藥物。由於肝癌為富涵許多血管的腫瘤,且癌細胞的成長和轉移都和血管新生有密切的關係,所以抑制血管新生是治療肝癌的關鍵。Sorafenib 的其中一個功能就是抑制血管新生。
本論文始於利用血管螢光斑馬魚胚胎,篩選由國衛院生藥所謝興邦博士提供的326個小分子化合物,建立快速尋找抑制血管新生的藥物篩選平台。發現四個化合物 (LIB0256、LIB0307、LIB1F、LIB1O) 具有明顯抑制胚胎節間血管(ISVs) 的作用。另外,也測試了國衛院生藥所蔣維棠與徐祖安博士提供的兩個SRC抑制劑 (BPR1J419S1 (419S1)、BPR1J420S1 (420S1)),發現此二者具更強的抑制血管新生的作用。因此,選用此二者進一步進行抑制肝癌的實驗。
先前本實驗室己建立了HBx(p53-) 及src(p53-) 轉殖基因魚,分別在11及9個月會形成肝癌,且細胞周期相關基因表現明顯上升。利用11.3 個月大的HBx(p53-) 和8.7個月大的src(p53-)基因轉殖的成魚,眼窩注射兩個SRC抑制劑一週兩次,持續一個月後進行病理組織分析並抽RNA分析細胞周期相關基因之表現。發現419S1 和420S1及Sorafenib處理過的魚比起DMSO對照組,細胞周期相關基因(ccne1、cdk1、cdk2)表現量下降許多,同時H&E染色發現相較於DMSO對照組的呈現的肝癌病癥,419S1 和420S1及Sorafenib處理過的魚的肝組織呈現發炎、脂肪肝等肝癌前期病癥。
為了建立可更快速篩選抑制癌細胞增生和轉移的斑馬魚模式,我藉由異種移植方法,將大量表現Endothelin 1 (EDN1) 的293T細胞打入兩天大的斑馬魚胚胎之卵黃腔,測試419S1 和420S1抑制癌細胞增生和轉移的作用。發現419S1 和420S1可以有效的抑制癌細胞增生和轉移。
一般而言,小分子抗癌藥物因為毒性高,固然對癌細胞具有良好藥效,但卻因缺乏標靶性,而損害到正常細胞,引起副作用。因此,我也利用肝臟紅螢光的轉基因斑馬魚胚胎做肝毒性測試。發現420S1和 Sorafenib會減弱肝臟紅螢光強度以及縮小肝的大小,可能有肝毒性,而419S1與DMSO 對照組的結果相似,因此419S1對肝臟似乎較沒有毒性。
我的碩士論文建立了斑馬魚藥物篩選平台,證實了斑馬魚肝癌成魚或血管螢光斑馬魚胚胎、斑馬魚異種移植模式都可成為篩選抗肝癌的藥物之模式,並可利用肝臟紅螢光的轉基因斑馬魚胚胎檢查其肝毒性。相對於其他動物模型,斑馬魚可更快速地幫我們尋找新的抗癌藥物。
中文摘要 I
Abstract III
Table of contents V
Chapter 1 Introduction 1
1.1 General information of hepatocellular carcinoma (HCC) 1
1.1.1 Epidemiology 1
1.1.2 Risk factors 1
1.1.3 Preventions 2
1.1.4 Treatments 2
1.1.5 Other treatments 2
1.1.6 Targeted therapies 3
1.2 Zebrafish models 3
1.2.1 Cancer models 5
1.2.2 Liver cancer models 5
1.2.3 Zebrafish xenograft models 7
1.2.4 Angiogenesis 7
1.2.5 Zebrafish drug screening platform 8
1.3 Drugs for testing 10
1.3.1 326 small molecules and PTK787 10
1.3.2 BPR1J419S1, BPR1J420S1, and Sorafenib 11
Specific aim 12
Chapter 2 Materials and Methods 13
2.1 Transgenic zebrafish lines 13
2.2 Sources of compounds 13
2.3 Zebrafish maintenance 13
2.4 Embryo collection 14
2.5 Drug screening for angiogenesis inhibition 14
2.6 Titration of the compound concentration 15
2.7 Retro orbital injection (RO injection) 15
2.8 Liver tissue collection and paraffin section 15
2.9 Total RNA isolation 16
2.10 Reverse transcription-polymerase chain reaction (RT-PCR) 17
2.11 Quantitative polymerase chain reaction (Q-PCR) 18
2.12 Cell culture 19
2.13 Xenotransplantation assay to examine cell proliferation and migration in zebrafish 19
2.14 Hepatoxicity assay 20
2.15 Statistical analysis 21
Chapter 3 Results 22
3.1 Set up the drug screening platform 22
3.2 The identification of the small compounds with anti-angiogenesis effect using zebrafish larva 23
3.3 BPR1J419S1 and BPR1J420S1 exhibit strong anti-angiogenesis effect 25
3.4 BPR1J419S1 and BPR1J420S1 may prevent HCC formation in HBx(p53-) and src(p53-) transgenic zebrafish 25
3.5 BPR1J419S1 and BPR1J420S1 reduce tumor cell migration and proliferation in xenotransplantation model 26
3.6 The concentration of BPR1J419S1 shows less hepatotoxicity 28
Chapter 4 Discussion 29
Conclusion 33
Figures and Tables 34
Figure 1. VEGF signal pathway in angiogenesis and the three small molecules exhibit the anti-angiogenesis effect. 34
Figure 2. Structures of 326 small compounds. 36
Figure 3. Measurement of the lengths of ISVs. 37
Figure 4. Plate setting and the examples of anti-angiogenesis phenotype every screening. 38
Figure 5. Titrations of LIB1F, LIB1O, LIB0307, and their IC50 for anti-angiogenesis. 40
Figure 6. Titrations of 419S1 and 420S1, and their IC50 for anti-angiogenesis. 42
Figure 7. Adult zebrafish with HCC treated with 419S1 and 420S1 reversed HCC formation. 44
Figure 8. 419S1 and 420S1, and Sorafenib exhibit anti-proliferation and anti-migration abilities in xenotransplantation assay. 46
Figure 9. GFP-mCherry embryos treated with 419S1, 420S1, and Sorafenib and observe RFP intensity and liver size at 5 dpf. 47
Table 1 The primer sequence of Q-PCR for cell cycle-related genes ccne1, cdk1, and cdk2. 48
Supplementary Figures 49
Figure S1. Anti-angiogenesis screening for LIB1O and LIB1F derivatives. 49
Figure S2. HBx(p53-) and src(p53-) showed HCC at 11 and 9 months of stage. 53
References 54
Ablain, J., and Zon, L.I. (2013). Of fish and men: using zebrafish to fight human diseases. Trends in cell biology 23, 584-586.
Bruix, J., Sherman, M., and American Association for the Study of Liver, D. (2011). Management of hepatocellular carcinoma: an update. Hepatology 53, 1020-1022.
Buijs, M., Reyes, D.K., Pawlik, T.M., Blackford, A.L., Salem, R., Messersmith, W.A., Weekes, C.D., Mulcahy, M., Kamel, I.R., and Geschwind, J.F. (2013). Phase 2 trial of concurrent bevacizumab and transhepatic arterial chemoembolization in patients with unresectable hepatocellular carcinoma. Cancer 119, 1042-1049.
Carr, B.I., Wang, Z., Wang, M., Cavallini, A., D'Alessandro, R., and Refolo, M.G. (2011). c-Met-Akt pathway-mediated enhancement of inhibitory c-Raf phosphorylation is involved in vitamin K1 and Sorafenib synergy on HCC growth inhibition. Cancer biology & therapy 12, 531-538.
Chong, D.Q., Tan, I.B., Choo, S.P., and Toh, H.C. (2013). The evolving landscape of therapeutic drug development for hepatocellular carcinoma. Contemporary clinical trials 36, 605-615.
Chung, A.S., Lee, J., and Ferrara, N. (2010). Targeting the tumour vasculature: insights from physiological angiogenesis. Nature reviews Cancer 10, 505-514.
Drevs, J., Muller-Driver, R., Wittig, C., Fuxius, S., Esser, N., Hugenschmidt, H., Konerding, M.A., Allegrini, P.R., Wood, J., Hennig, J., et al. (2002). PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer research 62, 4015-4022.
El-Serag, H.B., and Rudolph, K.L. (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557-2576.
Folkman, J., and Ingber, D. (1992). Inhibition of angiogenesis. Seminars in cancer biology 3, 89-96.
Goessling, W., North, T.E., and Zon, L.I. (2007). Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors. Nature methods 4, 551-553.
Goldsmith, J.R., and Jobin, C. (2012). Think small: zebrafish as a model system of human pathology. Journal of biomedicine & biotechnology 2012, 817341.
Gomaa, A.-I. (2008). Hepatocellular carcinoma: Epidemiology, risk factors and pathogenesis. World Journal of Gastroenterology 14, 4300.
Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.
Her, G.M., Yeh, Y.H., and Wu, J.L. (2003). 435-bp liver regulatory sequence in the liver fatty acid binding protein (L-FABP) gene is sufficient to modulate liver regional expression in transgenic zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 227, 347-356.
Hoshida, Y., Fuchs, B.C., and Tanabe, K.K. (2012). Prevention of hepatocellular carcinoma: potential targets, experimental models, and clinical challenges. Current cancer drug targets 12, 1129-1159.
Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503.
Isogai, S., Horiguchi, M., and Weinstein, B.M. (2001). The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230, 278-301.
Kawakami, K. (2007). Tol2: a versatile gene transfer vector in vertebrates. Genome biology 8 Suppl 1, S7.
Kwan, K.M., Fujimoto, E., Grabher, C., Mangum, B.D., Hardy, M.E., Campbell, D.S., Parant, J.M., Yost, H.J., Kanki, J.P., and Chien, C.B. (2007). The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Developmental dynamics : an official publication of the American Association of Anatomists 236, 3088-3099.
Lam, S.H., Chua, H.L., Gong, Z., Lam, T.J., and Sin, Y.M. (2004). Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Developmental & Comparative Immunology 28, 9-28.
Lam, S.H., Wu, Y.L., Vega, V.B., Miller, L.D., Spitsbergen, J., Tong, Y., Zhan, H., Govindarajan, K.R., Lee, S., Mathavan, S., et al. (2006). Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24, 73-75.
Lawson, N.D., and Weinstein, B.M. (2002). In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. Developmental Biology 248, 307-318.
Lee, Y.Y., McKinney, K.Q., Ghosh, S., Iannitti, D.A., Martinie, J.B., Caballes, F.R., Russo, M.W., Ahrens, W.A., Lundgren, D.H., Han, D.K., et al. (2011). Subcellular tissue proteomics of hepatocellular carcinoma for molecular signature discovery. Journal of proteome research 10, 5070-5083.
Letamendia, A., Quevedo, C., Ibarbia, I., Virto, J.M., Holgado, O., Diez, M., Izpisua Belmonte, J.C., and Callol-Massot, C. (2012). Development and validation of an automated high-throughput system for zebrafish in vivo screenings. PloS One 7, e36690.
Lieschke, G.J., and Currie, P.D. (2007). Animal models of human disease: zebrafish swim into view. Nature reviews Genetics 8, 353-367.
Liu, W., Chen, J.R., Hsu, C.H., Li, Y.H., Chen, Y.M., Lin, C.Y., Huang, S.J., Chang, Z.K., Chen, Y.C., Lin, C.H., et al. (2012). A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 56, 2268-2276.
Lu, J., Xin, S., Meng, H., Veldman, M., Schoenfeld, D., Che, C., Yan, R., Zhong, H., Li, S., and Lin, S. (2013a). A novel anti-tumor inhibitor identified by virtual screen with PLK1 structure and zebrafish assay. PloS One 8, e53317.
Lu, J.W., Hsia, Y., Tu, H.C., Hsiao, Y.C., Yang, W.Y., Wang, H.D., and Yuh, C.H. (2011). Liver development and cancer formation in zebrafish. Birth defects research Part C, Embryo today : reviews 93, 157-172.
Lu, J.W., Hsia, Y., Yang, W.Y., Lin, Y.I., Li, C.C., Tsai, T.F., Chang, K.W., Shieh, G.S., Tsai, S.F., Wang, H.D., et al. (2012). Identification of the common regulators for hepatocellular carcinoma induced by hepatitis B virus X antigen in a mouse model. Carcinogenesis 33, 209-219.
Lu, J.W., Liao, C.Y., Yang, W.Y., Lin, Y.M., Jin, S.L., Wang, H.D., and Yuh, C.H. (2014). Overexpression of endothelin 1 triggers hepatocarcinogenesis in zebrafish and promotes cell proliferation and migration through the AKT pathway. PloS One 9, e85318.
Lu, J.W., Yang, W.Y., Lin, Y.M., Jin, S.L., and Yuh, C.H. (2013b). Hepatitis B virus X antigen and aflatoxin B1 synergistically cause hepatitis, steatosis and liver hyperplasia in transgenic zebrafish. Acta Histochem 115, 728-739.
Lu, J.W., Yang, W.Y., Tsai, S.M., Lin, Y.M., Chang, P.H., Chen, J.R., Wang, H.D., Wu, J.L., Jin, S.L., and Yuh, C.H. (2013c). Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PloS One 8, e76951.
Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., de Plater, L., Guyader, C., De Pinieux, G., Judde, J.G., et al. (2007). A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical cancer research : an official journal of the American Association for Cancer Research 13, 3989-3998.
Mimeault, M., and Batra, S.K. (2013). Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials. Drug discovery today 18, 128-140.
Mollbrink, A., Augsten, M., Hultcrantz, R., Eriksson, L.C., and Stal, P. (2013). Sorafenib prolongs liver regeneration after hepatic resection in rats. The Journal of surgical research 184, 847-854.
Nguyen, A.T., Emelyanov, A., Koh, C.H., Spitsbergen, J.M., Lam, S.H., Mathavan, S., Parinov, S., and Gong, Z. (2011). A high level of liver-specific expression of oncogenic Kras(V12) drives robust liver tumorigenesis in transgenic zebrafish. Disease models & mechanisms 4, 801-813.
Nguyen, A.T., Emelyanov, A., Koh, C.H., Spitsbergen, J.M., Parinov, S., and Gong, Z. (2012). An inducible kras(V12) transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Disease models & mechanisms 5, 63-72.
Novodvorsky, P., Da Costa, M.M., and Chico, T.J. (2013). Zebrafish-based small molecule screens for novel cardiovascular drugs. Drug discovery today Technologies 10, e109-114.
Parng, C., Seng, W.L., Semino, C., and McGrath, P. (2002). Zebrafish: a preclinical model for drug screening. Assay and drug development technologies 1, 41-48.
Passeri, M.J., Cinaroglu, A., Gao, C., and Sadler, K.C. (2009). Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology 49, 443-452.
Ribatti, D. (2007). The history of angiogenesis inhibitors. Leukemia 21, 1606-1609.
Shieh, Y.S., Chang, Y.S., Hong, J.R., Chen, L.J., Jou, L.K., Hsu, C.C., and Her, G.M. (2010). Increase of hepatic fat accumulation by liver specific expression of Hepatitis B virus X protein in zebrafish. Biochimica et biophysica acta 1801, 721-730.
Siolas, D., and Hannon, G.J. (2013). Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer research 73, 5315-5319.
Spitsbergen, J.M., and Kent, M.L. (2003). The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicologic pathology 31 Suppl, 62-87.
Spitsbergen, J.M., Tsai, H.W., Reddy, A., Miller, T., Arbogast, D., Hendricks, J.D., and Bailey, G.S. (2000). Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicologic pathology 28, 705-715.
Stahlhut, C., Suarez, Y., Lu, J., Mishima, Y., and Giraldez, A.J. (2012). miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish. Development 139, 4356-4364.
Sukardi, H., Chng, H.T., Chan, E.C., Gong, Z., and Lam, S.H. (2011). Zebrafish for drug toxicity screening: bridging the in vitro cell-based models and in vivo mammalian models. Expert opinion on drug metabolism & toxicology 7, 579-589.
Terriente, J., and Pujades, C. (2013). Use of zebrafish embryos for small molecule screening related to cancer. Developmental dynamics : an official publication of the American Association of Anatomists 242, 97-107.
Trede, N.S., Langenau, D.M., Traver, D., Look, A.T., and Zon, L.I. (2004). The Use of Zebrafish to Understand Immunity. Immunity 20, 367-379.
Villanueva, A., and Llovet, J.M. (2011). Targeted therapies for hepatocellular carcinoma. Gastroenterology 140, 1410-1426.
Villefranc, J.A., Amigo, J., and Lawson, N.D. (2007). Gateway compatible vectors for analysis of gene function in the zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 236, 3077-3087.
Vogt, A., Cholewinski, A., Shen, X., Nelson, S.G., Lazo, J.S., Tsang, M., and Hukriede, N.A. (2009). Automated image-based phenotypic analysis in zebrafish embryos. Developmental dynamics : an official publication of the American Association of Anatomists 238, 656-663.
Vogt, A., Codore, H., Day, B.W., Hukriede, N.A., and Tsang, M. (2010). Development of automated imaging and analysis for zebrafish chemical screens. Journal of visualized experiments : JoVE.
Walker, S.L., Ariga, J., Mathias, J.R., Coothankandaswamy, V., Xie, X., Distel, M., Koster, R.W., Parsons, M.J., Bhalla, K.N., Saxena, M.T., et al. (2012). Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish. PloS One 7, e29916.
Wang, C., Tao, W., Wang, Y., Bikow, J., Lu, B., Keating, A., Verma, S., Parker, T.G., Han, R., and Wen, X.Y. (2010). Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. European urology 58, 418-426.
Wang, Z. (2013). Adjuvant therapy for hepatocellular carcinoma: Current situation and prospect. Drug Discoveries & Therapeutics.
Wood, J.M., Bold, G., Buchdunger, E., Cozens, R., Ferrari, S., Frei, J., Hofmann, F., Mestan, J., Mett, H., O'Reilly, T., et al. (2000). PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer research 60, 2178-2189.
Xu, C., Tabebordbar, M., Iovino, S., Ciarlo, C., Liu, J., Castiglioni, A., Price, E., Liu, M., Barton, E.R., Kahn, C.R., et al. (2013a). A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155, 909-921.
Xu, Y., Lin, H., Meng, N., Lu, W., Li, G., Han, Y., Dai, X., Xia, Y., Song, X., Yang, S., et al. (2013b). YL529, a novel, orally available multikinase inhibitor, potently inhibits angiogenesis and tumour growth in preclinical models. British journal of pharmacology 169, 1766-1780.
Yang, X.J., Chen, G.L., Yu, S.C., Xu, C., Xin, Y.H., Li, T.T., Shi, Y., Gu, A., Duan, J.J., Qian, C., et al. (2013). TGF-beta1 enhances tumor-induced angiogenesis via JNK pathway and macrophage infiltration in an improved zebrafish embryo/xenograft glioma model. International immunopharmacology 15, 191-198.
Yang, Z.F., and Poon, R.T. (2008). Vascular changes in hepatocellular carcinoma. Anatomical record 291, 721-734.
Zhang, X., Li, C., and Gong, Z. (2014). Development of a convenient in vivo hepatotoxin assay using a transgenic zebrafish line with liver-specific DsRed expression. PloS One 9, e91874.
Zhao, D., Qin, C., Fan, X., Li, Y., and Gu, B. (2014). Inhibitory effects of quercetin on angiogenesis in larval zebrafish and human umbilical vein endothelial cells. European journal of pharmacology 723, 360-367.
Zon, L.I., and Peterson, R.T. (2005). In vivo drug discovery in the zebrafish. Nature reviews Drug discovery 4, 35-44.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *