|
Ablain, J., and Zon, L.I. (2013). Of fish and men: using zebrafish to fight human diseases. Trends in cell biology 23, 584-586. Bruix, J., Sherman, M., and American Association for the Study of Liver, D. (2011). Management of hepatocellular carcinoma: an update. Hepatology 53, 1020-1022. Buijs, M., Reyes, D.K., Pawlik, T.M., Blackford, A.L., Salem, R., Messersmith, W.A., Weekes, C.D., Mulcahy, M., Kamel, I.R., and Geschwind, J.F. (2013). Phase 2 trial of concurrent bevacizumab and transhepatic arterial chemoembolization in patients with unresectable hepatocellular carcinoma. Cancer 119, 1042-1049. Carr, B.I., Wang, Z., Wang, M., Cavallini, A., D'Alessandro, R., and Refolo, M.G. (2011). c-Met-Akt pathway-mediated enhancement of inhibitory c-Raf phosphorylation is involved in vitamin K1 and Sorafenib synergy on HCC growth inhibition. Cancer biology & therapy 12, 531-538. Chong, D.Q., Tan, I.B., Choo, S.P., and Toh, H.C. (2013). The evolving landscape of therapeutic drug development for hepatocellular carcinoma. Contemporary clinical trials 36, 605-615. Chung, A.S., Lee, J., and Ferrara, N. (2010). Targeting the tumour vasculature: insights from physiological angiogenesis. Nature reviews Cancer 10, 505-514. Drevs, J., Muller-Driver, R., Wittig, C., Fuxius, S., Esser, N., Hugenschmidt, H., Konerding, M.A., Allegrini, P.R., Wood, J., Hennig, J., et al. (2002). PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer research 62, 4015-4022. El-Serag, H.B., and Rudolph, K.L. (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557-2576. Folkman, J., and Ingber, D. (1992). Inhibition of angiogenesis. Seminars in cancer biology 3, 89-96. Goessling, W., North, T.E., and Zon, L.I. (2007). Ultrasound biomicroscopy permits in vivo characterization of zebrafish liver tumors. Nature methods 4, 551-553. Goldsmith, J.R., and Jobin, C. (2012). Think small: zebrafish as a model system of human pathology. Journal of biomedicine & biotechnology 2012, 817341. Gomaa, A.-I. (2008). Hepatocellular carcinoma: Epidemiology, risk factors and pathogenesis. World Journal of Gastroenterology 14, 4300. Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674. Her, G.M., Yeh, Y.H., and Wu, J.L. (2003). 435-bp liver regulatory sequence in the liver fatty acid binding protein (L-FABP) gene is sufficient to modulate liver regional expression in transgenic zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 227, 347-356. Hoshida, Y., Fuchs, B.C., and Tanabe, K.K. (2012). Prevention of hepatocellular carcinoma: potential targets, experimental models, and clinical challenges. Current cancer drug targets 12, 1129-1159. Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503. Isogai, S., Horiguchi, M., and Weinstein, B.M. (2001). The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230, 278-301. Kawakami, K. (2007). Tol2: a versatile gene transfer vector in vertebrates. Genome biology 8 Suppl 1, S7. Kwan, K.M., Fujimoto, E., Grabher, C., Mangum, B.D., Hardy, M.E., Campbell, D.S., Parant, J.M., Yost, H.J., Kanki, J.P., and Chien, C.B. (2007). The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Developmental dynamics : an official publication of the American Association of Anatomists 236, 3088-3099. Lam, S.H., Chua, H.L., Gong, Z., Lam, T.J., and Sin, Y.M. (2004). Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Developmental & Comparative Immunology 28, 9-28. Lam, S.H., Wu, Y.L., Vega, V.B., Miller, L.D., Spitsbergen, J., Tong, Y., Zhan, H., Govindarajan, K.R., Lee, S., Mathavan, S., et al. (2006). Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24, 73-75. Lawson, N.D., and Weinstein, B.M. (2002). In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. Developmental Biology 248, 307-318. Lee, Y.Y., McKinney, K.Q., Ghosh, S., Iannitti, D.A., Martinie, J.B., Caballes, F.R., Russo, M.W., Ahrens, W.A., Lundgren, D.H., Han, D.K., et al. (2011). Subcellular tissue proteomics of hepatocellular carcinoma for molecular signature discovery. Journal of proteome research 10, 5070-5083. Letamendia, A., Quevedo, C., Ibarbia, I., Virto, J.M., Holgado, O., Diez, M., Izpisua Belmonte, J.C., and Callol-Massot, C. (2012). Development and validation of an automated high-throughput system for zebrafish in vivo screenings. PloS One 7, e36690. Lieschke, G.J., and Currie, P.D. (2007). Animal models of human disease: zebrafish swim into view. Nature reviews Genetics 8, 353-367. Liu, W., Chen, J.R., Hsu, C.H., Li, Y.H., Chen, Y.M., Lin, C.Y., Huang, S.J., Chang, Z.K., Chen, Y.C., Lin, C.H., et al. (2012). A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 56, 2268-2276. Lu, J., Xin, S., Meng, H., Veldman, M., Schoenfeld, D., Che, C., Yan, R., Zhong, H., Li, S., and Lin, S. (2013a). A novel anti-tumor inhibitor identified by virtual screen with PLK1 structure and zebrafish assay. PloS One 8, e53317. Lu, J.W., Hsia, Y., Tu, H.C., Hsiao, Y.C., Yang, W.Y., Wang, H.D., and Yuh, C.H. (2011). Liver development and cancer formation in zebrafish. Birth defects research Part C, Embryo today : reviews 93, 157-172. Lu, J.W., Hsia, Y., Yang, W.Y., Lin, Y.I., Li, C.C., Tsai, T.F., Chang, K.W., Shieh, G.S., Tsai, S.F., Wang, H.D., et al. (2012). Identification of the common regulators for hepatocellular carcinoma induced by hepatitis B virus X antigen in a mouse model. Carcinogenesis 33, 209-219. Lu, J.W., Liao, C.Y., Yang, W.Y., Lin, Y.M., Jin, S.L., Wang, H.D., and Yuh, C.H. (2014). Overexpression of endothelin 1 triggers hepatocarcinogenesis in zebrafish and promotes cell proliferation and migration through the AKT pathway. PloS One 9, e85318. Lu, J.W., Yang, W.Y., Lin, Y.M., Jin, S.L., and Yuh, C.H. (2013b). Hepatitis B virus X antigen and aflatoxin B1 synergistically cause hepatitis, steatosis and liver hyperplasia in transgenic zebrafish. Acta Histochem 115, 728-739. Lu, J.W., Yang, W.Y., Tsai, S.M., Lin, Y.M., Chang, P.H., Chen, J.R., Wang, H.D., Wu, J.L., Jin, S.L., and Yuh, C.H. (2013c). Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PloS One 8, e76951. Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., de Plater, L., Guyader, C., De Pinieux, G., Judde, J.G., et al. (2007). A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical cancer research : an official journal of the American Association for Cancer Research 13, 3989-3998. Mimeault, M., and Batra, S.K. (2013). Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials. Drug discovery today 18, 128-140. Mollbrink, A., Augsten, M., Hultcrantz, R., Eriksson, L.C., and Stal, P. (2013). Sorafenib prolongs liver regeneration after hepatic resection in rats. The Journal of surgical research 184, 847-854. Nguyen, A.T., Emelyanov, A., Koh, C.H., Spitsbergen, J.M., Lam, S.H., Mathavan, S., Parinov, S., and Gong, Z. (2011). A high level of liver-specific expression of oncogenic Kras(V12) drives robust liver tumorigenesis in transgenic zebrafish. Disease models & mechanisms 4, 801-813. Nguyen, A.T., Emelyanov, A., Koh, C.H., Spitsbergen, J.M., Parinov, S., and Gong, Z. (2012). An inducible kras(V12) transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Disease models & mechanisms 5, 63-72. Novodvorsky, P., Da Costa, M.M., and Chico, T.J. (2013). Zebrafish-based small molecule screens for novel cardiovascular drugs. Drug discovery today Technologies 10, e109-114. Parng, C., Seng, W.L., Semino, C., and McGrath, P. (2002). Zebrafish: a preclinical model for drug screening. Assay and drug development technologies 1, 41-48. Passeri, M.J., Cinaroglu, A., Gao, C., and Sadler, K.C. (2009). Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology 49, 443-452. Ribatti, D. (2007). The history of angiogenesis inhibitors. Leukemia 21, 1606-1609. Shieh, Y.S., Chang, Y.S., Hong, J.R., Chen, L.J., Jou, L.K., Hsu, C.C., and Her, G.M. (2010). Increase of hepatic fat accumulation by liver specific expression of Hepatitis B virus X protein in zebrafish. Biochimica et biophysica acta 1801, 721-730. Siolas, D., and Hannon, G.J. (2013). Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer research 73, 5315-5319. Spitsbergen, J.M., and Kent, M.L. (2003). The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicologic pathology 31 Suppl, 62-87. Spitsbergen, J.M., Tsai, H.W., Reddy, A., Miller, T., Arbogast, D., Hendricks, J.D., and Bailey, G.S. (2000). Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicologic pathology 28, 705-715. Stahlhut, C., Suarez, Y., Lu, J., Mishima, Y., and Giraldez, A.J. (2012). miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish. Development 139, 4356-4364. Sukardi, H., Chng, H.T., Chan, E.C., Gong, Z., and Lam, S.H. (2011). Zebrafish for drug toxicity screening: bridging the in vitro cell-based models and in vivo mammalian models. Expert opinion on drug metabolism & toxicology 7, 579-589. Terriente, J., and Pujades, C. (2013). Use of zebrafish embryos for small molecule screening related to cancer. Developmental dynamics : an official publication of the American Association of Anatomists 242, 97-107. Trede, N.S., Langenau, D.M., Traver, D., Look, A.T., and Zon, L.I. (2004). The Use of Zebrafish to Understand Immunity. Immunity 20, 367-379. Villanueva, A., and Llovet, J.M. (2011). Targeted therapies for hepatocellular carcinoma. Gastroenterology 140, 1410-1426. Villefranc, J.A., Amigo, J., and Lawson, N.D. (2007). Gateway compatible vectors for analysis of gene function in the zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 236, 3077-3087. Vogt, A., Cholewinski, A., Shen, X., Nelson, S.G., Lazo, J.S., Tsang, M., and Hukriede, N.A. (2009). Automated image-based phenotypic analysis in zebrafish embryos. Developmental dynamics : an official publication of the American Association of Anatomists 238, 656-663. Vogt, A., Codore, H., Day, B.W., Hukriede, N.A., and Tsang, M. (2010). Development of automated imaging and analysis for zebrafish chemical screens. Journal of visualized experiments : JoVE. Walker, S.L., Ariga, J., Mathias, J.R., Coothankandaswamy, V., Xie, X., Distel, M., Koster, R.W., Parsons, M.J., Bhalla, K.N., Saxena, M.T., et al. (2012). Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish. PloS One 7, e29916. Wang, C., Tao, W., Wang, Y., Bikow, J., Lu, B., Keating, A., Verma, S., Parker, T.G., Han, R., and Wen, X.Y. (2010). Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. European urology 58, 418-426. Wang, Z. (2013). Adjuvant therapy for hepatocellular carcinoma: Current situation and prospect. Drug Discoveries & Therapeutics. Wood, J.M., Bold, G., Buchdunger, E., Cozens, R., Ferrari, S., Frei, J., Hofmann, F., Mestan, J., Mett, H., O'Reilly, T., et al. (2000). PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer research 60, 2178-2189. Xu, C., Tabebordbar, M., Iovino, S., Ciarlo, C., Liu, J., Castiglioni, A., Price, E., Liu, M., Barton, E.R., Kahn, C.R., et al. (2013a). A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155, 909-921. Xu, Y., Lin, H., Meng, N., Lu, W., Li, G., Han, Y., Dai, X., Xia, Y., Song, X., Yang, S., et al. (2013b). YL529, a novel, orally available multikinase inhibitor, potently inhibits angiogenesis and tumour growth in preclinical models. British journal of pharmacology 169, 1766-1780. Yang, X.J., Chen, G.L., Yu, S.C., Xu, C., Xin, Y.H., Li, T.T., Shi, Y., Gu, A., Duan, J.J., Qian, C., et al. (2013). TGF-beta1 enhances tumor-induced angiogenesis via JNK pathway and macrophage infiltration in an improved zebrafish embryo/xenograft glioma model. International immunopharmacology 15, 191-198. Yang, Z.F., and Poon, R.T. (2008). Vascular changes in hepatocellular carcinoma. Anatomical record 291, 721-734. Zhang, X., Li, C., and Gong, Z. (2014). Development of a convenient in vivo hepatotoxin assay using a transgenic zebrafish line with liver-specific DsRed expression. PloS One 9, e91874. Zhao, D., Qin, C., Fan, X., Li, Y., and Gu, B. (2014). Inhibitory effects of quercetin on angiogenesis in larval zebrafish and human umbilical vein endothelial cells. European journal of pharmacology 723, 360-367. Zon, L.I., and Peterson, R.T. (2005). In vivo drug discovery in the zebrafish. Nature reviews Drug discovery 4, 35-44. |