帳號:guest(18.191.44.3)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張慈芳
論文名稱(中文):綠膿桿菌PAO1氧化還原蛋白Azurin之生理功能及基因轉錄調控
論文名稱(外文):Physiological function and transcription regulation of Azurin, a redox protein in Pseudomonas aeruginosa PAO1
指導教授(中文):張晃猷
口試委員(中文):鄧文玲
高茂傑
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:101080544
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:109
中文關鍵詞:Azurin綠膿桿菌
相關次數:
  • 推薦推薦:0
  • 點閱點閱:643
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
Azurin為與銅鍵結而能發生電子轉移並進行氧化還原作用的蛋白質,參與細菌去硝化作用的電子傳遞路徑。有關Azurin在電化學、物理特性及腫瘤治療等方面已被廣泛研究,例如能進入癌細胞,抑制其生長及產生細胞毒性。但是Azurin的生化特性對於綠膿桿菌的生物意義目前仍不清楚。在本篇研究中利用同源重組的方式建構azu (PA4922) 剔除株,藉由與PAO1的表現型差異揭露azu的生理功能。結果顯示Δazu的泳動及抽動運動能力、綠膿菌素、螢光菌素、螯鐵分子、胞外多醣產量及對戀臭假單孢菌的競爭能力皆低於PAO1;與PAO1相比Δazu之群體移動能力、酪蛋白酶、溶血能力、AHL訊號分子、生物膜形成及細胞毒性等皆增加。但酚紅指示劑之氧化還原試驗卻未觀察到Δazu與PAO1有明顯差異。為探討azu基因之轉錄調控,本研究利用GUS報導基因及EMSA試驗,證實轉錄活化因子PsrA對於azu的轉錄調控為間接性,而靜止期轉錄調控因子RpoS能鍵結於azu啟動子區域直接影響azu的表現。因先前的研究已知PsrA調控rpoS,因此結合本篇研究我們推論PsrA藉由RpoS調控azu的表現。ΔrpoS及Δazu之抽動性運動及AHL訊號分子的表現型相似。由免疫轉漬法分析得知Azurin可以分泌至胞外,ΔpsrA分泌的Azurin低於PAO1,但ΔrpoS分泌的Azurin高於PAO1。綜合本研究結果,發現azu可能涉及綠膿桿菌PAO1多種生理活性之調控,且RpoS可以鍵結在azu的上游調控azu的表現。
Azurin is a copper-containing redox protein. Previous studies have demonstrated that Azurin is involved in denitrification pathway. Recently, it was discovered to be capable of entering mammalian cells causing cell death. Nevertheless,how the biochemical properties correlates with the physiological properties of Azurin in Pseudomonas aeruginosa PAO1 is still unknown. The purpose of this study is to investigate the biological role of Azurin and its gene regulation. This study constructed an azu deletion mutant and examined its biological properteis. Significant effects on pyocyanin, pyoverdin, and biofilm production, and cytotoxicity to Int407 cells could be observed on the mutant. However, resazurin and phenol red redox assay did not reveal significant difference between PAO1 and Δazu mutant. Using β-glucuronidase reporter gene assay and electrophoretic mobility shift assay, it was revealed that transcriptional regulator PsrA does not regulate azu directly. On the other hand, RpoS, a stationary-phase sigma factor, could bind the azu promoter specifically.Based on a previous study reporting that PsrA regulates rpoS gene expression, we propose that PsrA regulates azu gene expression through RpoS. This notion was supported by the fact that the phenotypic trait of twitching motility and AHL production are consistent in ΔrpoS and Δazu. Western blot analysis illustrated that Azurin could be secreted to extracellular and ΔpsrA decreased Azurin production but not ΔrpoS. Though the function of Azurin has not been clarified, this study has established a strong basis for future analysis of the Azurin and azu regulation.
中文摘要........................................................................................................................ I Abstract........................................................................................................................II 誌謝............................................................................................................................. III
縮寫字對照表 ............................................................................................................ IV 目錄............................................................................................................................ VII 表目錄........................................................................................................................... X 圖目錄......................................................................................................................... XI 壹、 前言...................................................................................................................... 1
1.1 綠膿桿菌........................................................................................................... 1
1.2 Azurin................................................................................................................. 3
1.3 轉錄調控因子 PsrA.......................................................................................... 7
1.4 轉錄調控因子 RpoS......................................................................................... 9
1.5 本篇研究目的................................................................................................. 10

貳、 材料與方法 ....................................................................................................... 11

2.1 菌株、質體與生長環境................................................................................. 11
2.2 細胞與培養條件............................................................................................. 11
2.3 染色體 DNA 萃取.......................................................................................... 12
2.4 質體 DNA 製備.............................................................................................. 12
2.5 聚合酶連鎖反應............................................................................................. 13
2.6 限制酵素處理與接合作用............................................................................. 14
2.7 製備勝任細胞................................................................................................. 14
2.8 熱休克轉型法................................................................................................. 15
2.9 構築突變株..................................................................................................... 15
2.9.1 構築質體................................................................................................ 15
2.9.2 第一次同源重組.................................................................................... 16
2.9.3 第二次同源重組.................................................................................... 16
2.10 接合生殖....................................................................................................... 16

2.11 生長曲線測試............................................................................................... 17
2.12 泳動性測試................................................................................................... 17
2.13 群體移動能力測試....................................................................................... 18
2.14 抽動性運動測試........................................................................................... 18
2.15 螢光色素鑒定............................................................................................... 18
2.16 螢光色素定量測試....................................................................................... 19
2.17 綠膿菌素鑒定............................................................................................... 19
2.18 綠膿菌素定量測定....................................................................................... 19
2.19 螯鐵分子測試............................................................................................... 20
2.20 溶血性測試................................................................................................... 20
2.21 酪蛋白酶測試............................................................................................... 21
2.22 菌落形態測試............................................................................................... 21
2.23 生物膜定量分析........................................................................................... 21
2.24 N-acyl homoserine lactones 訊號分子測試................................................. 22
2.25 細胞毒殺測試............................................................................................... 22
2.25.1 處理細菌上清液.................................................................................. 22
2.25.2 處理細菌.............................................................................................. 23
2.26 細菌侵入性試驗........................................................................................... 24
2.27 細菌競爭試驗............................................................................................... 25
2.28 Resazurin 氧化還原指示劑測試................................................................... 25
2.29 酚紅指示劑測試........................................................................................... 26
2.30-葡萄糖苷酸酶報導基因試驗之標準曲線配置........................................ 26
2.31-葡萄糖苷酸酶報導基因試驗.................................................................... 26
2.32 IPTG 誘導基因表現...................................................................................... 27
2.33 His-tag 親和性管柱純化蛋白質................................................................... 28
2.34 聚丙烯醯胺膠體電泳................................................................................... 29
2.35 考馬斯亮藍染色........................................................................................... 29
2.36 蛋白質的透析............................................................................................... 30
2.37 凝膠電泳遷移試驗....................................................................................... 30
2.37.1 生物素標定 DNA 建立....................................................................... 30
2.37.2 製備凝膠電泳遷移試驗膠體.............................................................. 30
2.37.3 凝膠電泳遷移試驗.............................................................................. 31
2.38 抗體製備....................................................................................................... 32
2.39 免疫轉漬分析............................................................................................... 32

參、 結果.................................................................................................................... 34

3.1 Azurin 蛋白質功能區域分析.......................................................................... 34
3.2 構築 GUS 報導基因質體............................................................................... 34

3.3 綠膿桿菌 PAO1 與 psrA 剔除株對 azu 啟動子序列的調控能力................ 35
3.4 綠膿桿菌 PAO1 與 rpoS 剔除株對 azu 啟動子序列的調控能力................ 35
3.5 綠膿桿菌 PAO1 與 anr 剔除株中對 azu 啟動子序列的調控能力.............. 36
3.6 綠膿桿菌 PAO1 與 dnr 剔除株中對 azu 啟動子序列的調控能力.............. 37
3.7 RpoS 與 azu 啟動子區域結合調控 azu 基因表現......................................... 37
3.8 構築重組蛋白................................................................................................. 38
3.9 Azurin 蛋白質的表現與純化.......................................................................... 38
3.10 免疫轉漬分析綠膿桿菌 azu 過度表現株中 Azurin 分泌情形.................. 38
3.11 構築 azu 剔除株 ........................................................................................... 39
3.12 構築 azu 過度表現株與回補株................................................................... 40
3.13 綠膿桿菌 PAO1 野生株與 azu 剔除株 (Δazu) 的生長曲線測試............. 40
3.14 剔除 azu 基因對於綠膿桿菌 PAO1 泳動能力的影響 ............................... 40
3.15 剔除 azu 對於綠膿桿菌 PAO1 群體移動能力的影響 ............................... 41
3.16 剔除 azu 對於綠膿桿菌 PAO1 抽動性運動能力的影響 ........................... 42
3.17 剔除 azu 對於螢光菌素分泌的影響........................................................... 42
3.18 剔除 azu 對於綠膿菌素分泌的影響........................................................... 43
3.19 剔除 azu 對於綠膿桿菌 PAO1 螯鐵分子的影響 ....................................... 44
3.20 剔除 azu 對於綠膿桿菌 PAO1 溶血能力的影響 ....................................... 44
3.21 剔除 azu 對於綠膿桿菌 PAO1 酪蛋白酶活性的影響 ............................... 45
3.22 剔除 azu 對於綠膿桿菌 PAO1 菌落型態的影響 ....................................... 46
3.23 剔除 azu 對於綠膿桿菌 PAO1 生物膜形成影響 ....................................... 46
3.24 剔除 azu 對於綠膿桿菌 PAO1 產生自體誘導物 AHL 的影響 ................. 47
3.25 剔除 azu 對於綠膿桿菌 PAO1 細胞毒性的影響 ....................................... 48
3.26 剔除 azu 對於綠膿桿菌 PAO1 被巨噬細胞 RAW 264.7 吞噬能力的影響
................................................................................................................................ 49
3.27 剔除 azu 對於綠膿桿菌 PAO1 侵入人類腸道細胞 Int-407 之分析.......... 49
3.28 剔除 azu 對戀臭假單孢菌競爭能力的影響............................................... 50
3.29 剔除 azu 對於綠膿桿菌 PAO1 氧化還原能力的影響 ............................... 50
3.30 剔除 azu 對於綠膿桿菌 PAO1 進行反硝化作用的影響 ........................... 51

肆、 討論.................................................................................................................... 53


伍、 參考文獻 ........................................................................................................... 61

伍、 參考文獻
1. Hardalo C & Edberg SC (1997) Pseudomonas aeruginosa: assessment of risk from drinking water. Critical reviews in microbiology 23(1):47-75.
2. O'Malley YQ, Reszka KJ, Spitz DR, Denning GM, & Britigan BE (2004) Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology 287(1):L94-L103.
3. Holloway B (1955) Genetic recombination in Pseudomonas aeruginosa. Journal of General Microbiology 13(3):572-581.
4. Bodey GP, Bolivar R, Fainstein V, & Jadeja L (1983) Infections caused by Pseudomonas aeruginosa. Review of Infectious Diseases 5(2):279-313.
5. Hassett DJ, et al. (2002) Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Advanced Drug Delivery Reviews 54:19.
6. Eschbach M, et al. (2004) Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. Journal of bacteriology 186(14):4596-4604.
7. Lambert P (2002) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. Journal of the Royal Society of Medicine 95(Suppl 41):22.
8. Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology 292(2):107-113.
9. Davies KJ, Lloyd D, & Boddy L (1989) The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. Journal of general microbiology 135(9):2445-2451.
10. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiology and molecular biology reviews 61(4):533-616.
11. Vander Wauven C, Pierard A, Kley-Raymann M, & Haas D (1984) Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. Journal of bacteriology 160(3):928-934.
12. Galimand M, Gamper M, Zimmermann A, & Haas D (1991) Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. Journal of bacteriology 173(5):1598-1606.
13. Zimmermann A, Reimmann C, Galimand M, & Haas D (1991) Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli. Molecular microbiology 5(6):1483-1490.
14. Sawers R (1991) Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli. Molecular microbiology 5(6):1469-1481.
15. Vijgenboom E, Busch JE, & Canters GW (1997) In vivo studies disprove an obligatory role of azurin in denitrification in Pseudornonas aeruginosa and show that azu expression is under control of RpoS and ANR. Microbiology 143:11.
16. Trunk K, et al. (2010) Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. Environmental Microbiology 12(6):1719-1733.
17. Arai H (2011) Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Frontiers in Microbiology 2.
18. Canters G (1987) The azurin gene from Pseudomonas aeruginosa codes for a pre-protein with a signal peptide: Cloning and sequencing of the azurin gene. FEBS letters 212(1):168-172.
19. Hoitink CW, Woudt LP, Turenhout J, van de Kamp M, & Canters GW (1990) Isolation and sequencing of the Alcaligenes denitrificans azurin-encoding gene: comparison with the genes encoding blue copper proteins from Pseudomonas aeruginosa and Alcaligenes faecalis. Gene 90(1):15-20.
20. Gak ER, Chistoserdov AY, & Lidstrom ME (1995) Cloning, sequencing, and mutation of a gene for azurin in Methylobacillus flagellatum KT. Journal of bacteriology 177(15):4575-4578.
21. Ambler RP & Tobari J (1989) Two distinct azurins function in the electron-transport chain of the obligate methylotroph Methylomonas J. The Biochemical journal 261(2):495-499.
22. Dodd FE, et al. (1995) Evidence for two distinct azurins in Alcaligenes xylosoxidans (NCIMB 11015): potential electron donors to nitrite reductase. Biochemistry 34(32):10180-10186.
23. Rienzo FD, Gabdoulline RR, Menziani MC, & Wade RC (2000) Blue copper proteins: A comparative analysis of their molecular interaction properties. Protein Science 9:16.
24. Adman ET (1991) Copper protein structures. Advances in protein chemistry 42:145-197.
25. KAMP M, et al. (1990) Involvement of the hydrophobic patch of azurin in the electron‐transfer reactions with cytochrome c551 and nitrite reductase. European journal of biochemistry 194(1):109-118.
26. Farver O, Jeuken LJ, Canters GW, & Pecht I (2000) Role of ligand substitution on long‐range electron transfer in azurins. European Journal of Biochemistry 267(11):3123-3129.
27. Nar H, Messerschmidt A, Huber R, van de Kamp M, & Canters GW (1991) Crystal structure analysis of oxidized Pseudomonas aeruginosa azurin at pH 5.5 and pH 9.0. A pH-induced conformational transition involves a peptide bond flip. Journal of molecular biology 221(3):765-772.
28. Nar H, Messerschmidt A, Huber R, Van de Kamp M, & Canters GW (1992) Crystal structure of Pseudomonas aeruginosa apo-azurin at 1.85 Å resolution. FEBS letters 306(2):119-124.
29. Ritz D & Beckwith J (2001) Roles of thiol-redox pathways in bacteria. Annual Review of Microbiology 55:30.
30. Suhorutsenko J, et al. (2011) Cell-penetrating peptides, PepFects, show no evidence of toxicity and immunogenicity in vitro and in vivo. Bioconjugate chemistry 22(11):2255-2262.
31. Jia L, et al. (2011) Preclinical pharmacokinetics, metabolism, and toxicity of azurin-p28 (NSC745104) a peptide inhibitor of p53 ubiquitination. Cancer chemotherapy and pharmacology 68(2):513-524.
32. Yamada T, et al. (2009) A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells. Molecular cancer therapeutics 8(10):2947-2958.
33. Taylor BN, et al. (2009) Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer research 69(2):537-546.
34. 刘芸, 李锦梅, 谭婷, & 姜勇 (2014) 细胞穿透肽应用的研究进展.
35. Yamada T, et al. (2002) The bacterial redox protein azurin induces apoptosis in J774 macrophages through complex formation and stabilization of the tumor suppressor protein p53. Infection and immunity 70(12):7054-7062.
36. Yamada T, et al. (2002) Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proceedings of the National Academy of Sciences of the United States of America 99(22):14098-14103.
37. Punj V, et al. (2004) Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene 23(13):2367-2378.
38. Yamada T, et al. (2004) Apoptosis or growth arrest: Modulation of tumor suppressor p53's specificity by bacterial redox protein azurin. Proceedings of the National Academy of Sciences of the United States of America 101(14):4770-4775.
39. Yamada T, Hiraoka Y, Gupta TKD, & Chakrabarty AM (2004) Regulation of mammalian cell growth and death by bacterial redox proteins: relevance to ecology and cancer therapy. Cell Cycle 3(6):750-753.
40. Apiyo D & Wittung-Stafshede P (2005) Unique complex between bacterial azurin and tumor-suppressor protein p53. Biochemical and biophysical research communications 332(4):965-968.
41. Pouderoyen G, et al. (1997) Electron‐Transfer Properties of Pseudomonas aeruginosa [Lys44, Glu64] azurin. European Journal of Biochemistry 247(1):322-331.
42. Kojic M, Aguilar C, & Venturi V (2002) TetR family member psrA directly binds the Pseudomonas rpoS and psrA promoters. Journal of bacteriology 184(8):2324-2330.
43. Kang Y, Nguyen DT, Son MS, & Hoang TT (2008) The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 β-oxidation operon. Microbiology 154(6):1584-1598.
44. Kang Y, et al. (2009) The long-chain fatty acid sensor, PsrA, modulates the expression of rpoS and the type III secretion exsCEBA operon in Pseudomonas aeruginosa. Molecular microbiology 73(1):120-136.
45. Kojic M & Venturi V (2001) Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator. Journal of bacteriology 183(12):3712-3720.
46. Shen DK, Filopon D, Kuhn L, Polack B, & Toussaint B (2006) PsrA is a positive transcriptional regulator of the type III secretion system in Pseudomonas aeruginosa. Infection and immunity 74(2):1121-1129.
47. Gooderham WJ, Bains M, McPhee JB, Wiegand I, & Hancock RE (2008) Induction by cationic antimicrobial peptides and involvement in intrinsic polymyxin and antimicrobial peptide resistance, biofilm formation, and swarming motility of PsrA in Pseudomonas aeruginosa. Journal of bacteriology 190(16):5624-5634.
48. Yahr TL, Goranson J, & Frank DW (1996) Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Molecular microbiology 22(5):991-1003.
49. Kolter R, Siegele DA, & Tormo A (1993) The stationary phase of the bacterial life cycle. Annual Reviews in Microbiology 47(1):855-874.
50. Loewen PC & Hengge-Aronis R (1994) The role of the sigma factor sigmas (KatF) in bacterial global regulation. Annual Reviews in Microbiology 48(1):53-80.
51. Lange R & Hengge‐Aronis R (1991) Identification of a central regulator of stationary‐phase gene expression in Escherichia coli. Molecular microbiology 5(1):49-59.
52. Fang FC, et al. (1992) The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proceedings of the National Academy of Sciences 89(24):11978-11982.
53. Kowarz L, Coynault C, Robbe-Saule V, & Norel F (1994) The Salmonella typhimurium katF (rpoS) gene: cloning, nucleotide sequence, and regulation of spvR and spvABCD virulence plasmid genes. Journal of bacteriology 176(22):6852-6860.
54. Nielsen AT, et al. (2006) RpoS controls the Vibrio cholerae mucosal escape response. PLoS pathogens 2(10):e109.
55. Yildiz FH & Schoolnik GK (1998) Role of rpoS in stress survival and virulence of Vibrio cholerae. Journal of bacteriology 180(4):773-784.
56. Fujita M, Tanaka K, Takahashi H, & Amemural A (1994) Transcription of the principal sigma‐factor genes, rpoD and rpoS, in Pseudomonas aeruginosa is controlled according to the growth phase. Molecular microbiology 13(6):1071-1077.
57. Latifi A, Foglino M, Tanaka K, Williams P, & Lazdunski A (1996) A hierarchical quorum‐sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary‐phase sigma factor RpoS. Molecular microbiology 21(6):1137-1146.
58. Pesci EC, Pearson JP, Seed PC, & Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. Journal of bacteriology 179(10):3127-3132.
59. Brint JM & Ohman DE (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. Journal of bacteriology 177(24):7155-7163.
60. Latifi A, et al. (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Molecular microbiology 17(2):333-343.
61. Suh S-J, et al. (1999) Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. Journal of bacteriology 181(13):8.
62. Foley I, Marsh P, Wellington E, Smith A, & Brown M (1999) General stress response master regulator rpoS is expressed in human infection: a possible role in chronicity. Journal of Antimicrobial Chemotherapy 43(1):164-165.
63. Dunkel IJ & Kramer K (2014) A Phase I Study of p28 in Children with Recurrent or Progressive Brain Tumors. (Memorial Sloan Kettering Cancer Center).
64. Vogel HJ & Bonner DM (1956) Acetylornithinase of Escherichia coli: partial purification and some properties. The Journal of Biological Chemistry 218:10.
65. Sambrook J, Fritsch EF, & Maniatis T (1989) Molecular cloning (Cold spring harbor laboratory press New York).
66. Palumbo SA (1972) Role of iron and sulfur in pigment and slime formation by Pseudomonas aeruginosa. Journal of bacteriology 111(2):430-436.
67. Milagres AM, Machuca A, & Napoleão D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of microbiological methods 37(1):1-6.
68. Sokol PA, Ohman DE, & Iglewski BH (1979) A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. Journal of clinical microbiology 9(4):538.
69. Hosseinidoust Z, Tufenkji N, & Van De Ven TG (2013) Predation in homogeneous and heterogeneous phage environments affects virulence determinants of Pseudomonas aeruginosa. Applied and environmental microbiology 79(9):2862-2871.
70. O'Toole GA & Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular microbiology 28(3):449-461.
71. McClean KH, et al. (1997) Quorum sensing and Chrornobacteriurn violaceurn : exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143:9.
72. Starkey M & Rahme LG (2009) Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nature protocols 4(2):117-124.
73. Sana TG, et al. (2012) The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J Biol Chem 287(32):27095-27105.
74. Russell AB, et al. (2013) Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496(7446):508-512.
75. Palmer KL, Aye LM, & Whiteley M (2007) Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. Journal of bacteriology 189(22):8079-8087.
76. Mazoch J & Kučera I (2002) Detection, with a pH indicator, of bacterial mutants unable to denitrify. Journal of microbiological methods 51(1):105-109.
77. Gallagher SR (1992) GUS protocols: using the GUS gene as a reporter of gene expression (Academic Press).
78. 許乃丹 (2011) Pseudomonas syringae pv. tomato DC3000 第六型分泌系統基因調控之初步探討. 碩士 (臺灣大學, 台北市).
79. Winzer K, et al. (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. Journal of bacteriology 182(22):6401-6411.
80. Guo M, Zhu Q, & Gao D (2009) Development and optimization of method for generating unmarked A. tumefaciens mutants. Progress in Biochemistry and Biophysics 36(5):556-565.
81. Shrout JD, et al. (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular microbiology 62(5):1264-1277.
82. Fleiszig SM, Arora SK, Van R, & Ramphal R (2001) FlhA, a component of the flagellum assembly apparatus of Pseudomonas aeruginosa, plays a role in internalization by corneal epithelial cells. Infection and immunity 69(8):4931-4937.
83. Tomich M, Herfst CA, Golden JW, & Mohr CD (2002) Role of flagella in host cell invasion by Burkholderia cepacia. Infection and immunity 70(4):1799-1806.
84. Xavier JB, Kim W, & Foster KR (2011) A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Molecular microbiology 79(1):166-179.
85. Meyer J-M, Neely A, Stintzi A, Georges C, & Holder IA (1996) Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infection and immunity 64(2):518-523.
86. King EO, Ward MK, & Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. Journal of laboratory and clinical medicine 44:301-307.
87. Lau GW, Hassett DJ, Ran H, & Kong F (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends in molecular medicine 10(12):599-606.
88. Denning GM, Railsback MA, Rasmussen GT, Cox CD, & Britigan BE (1998) Pseudomonas pyocyanine alters calcium signaling in human airway epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology 274(6):L893-L900.
89. Flo TH, et al. (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432(7019):917-921.
90. Johnson M & Allen J (1978) The role of hemolysin in corneal infections with Pseudomonas aeruginosa. Investigative ophthalmology & visual science 17(5):480-483.
91. Giordano GG, Refojo MF, & Arroyo MH (1993) Sustained delivery of retinoic acid from microspheres of biodegradable polymer in PVR. Investigative ophthalmology & visual science 34(9):2743-2751.
92. Heydorn A, et al. (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: Impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Applied and Environmental Microbiology 68(4):2008-2017.
93. Rampioni G, et al. (2006) The quorum-sensing negative regulator RsaL of Pseudomonas aeruginosa binds to the lasI promoter. Journal of bacteriology 188(2):815-819.
94. Waters CM & Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319-346.
95. Koh JY & Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. Journal of Neuroscience Methods 20(1):83-90.
96. Clynes R & Ravetch JV (1995) Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity 3(1):21-26.
97. Hibbing ME, Fuqua C, Parsek MR, & Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology 8(1):15-25.
98. Kassen R, Llewellyn M, & Rainey PB (2004) Ecological constraints on diversification in a model adaptive radiation. Nature 431(7011):984-988.
99. Thomas LV & Wimpenny JW (1993) Method for investigation of competition between bacteria as a function of three environmental factors varied simultaneously. Applied and environmental microbiology 59(6):1991-1997.
100. Joshi H, Dave R, & Venugopalan VP (2009) Competition triggers plasmid-mediated enhancement of substrate utilisation in Pseudomonas putida. PloS one 4(6):e6065.
101. Scher FM & Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72(12):1567-1573.
102. Silanikove N & Shapiro F (2012) Combined assays for lactose and galactose by enzymatic reactions. Dietary Sugars: Chemistry, Analysis Function and Effects:397-406.
103. Berks BC, Ferguson SJ, Moir JW, & Richardson DJ (1995) Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta 1232(3):97-173.
104. Valera CL & Alexander M (1961) Nutrition and physiology of denitrifying bacteria. Plant and Soil 15(3):268-280.
105. Davis BD & Tai P-C (1980) The mechanism of protein secretion across membranes. Nature 283(5746):433-438.
106. Tseng TT, Tyler BM, & Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC microbiology 9 Suppl 1:S2.
107. Julou T, et al. (2013) Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies. Proceedings of the National Academy of Sciences of the United States of America 110(31):12577-12582.
108. Bjorn MJ, Sokol PA, & Iglewski BH (1979) Influence of iron on yields of extracellular products in Pseudomonas aeruginosa cultures. Journal of bacteriology 138(1):193-200.
109. Kim E-J, Wang W, Deckwer W-D, & Zeng A-P (2005) Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology 151(4):1127-1138.
110. Nealson KH, Platt T, & Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of bacteriology 104(1):313-322.
111. Rumbaugha KP, Griswoldb JA, & Hamooda AN (2000) The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes and Infection 2:11.
112. Pearson JP, et al. (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proceedings of the National Academy of Sciences 91(1):197-201.
113. Whiteley M, R M, Parsek, & Greenberg EP (2000) Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. Journal of bacteriology 182(15):5.
114. Reimmann C, et al. (1997) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N‐butyryl‐homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Molecular microbiology 24(2):309-319.
115. Davies DG, et al. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295-298.
116. Heydorn A, et al. (2000) Experimental reproducibility in flow-chamber biofilms. Microbiology 146(10):2409-2415.
117. Schmidt J (2011) Regulation of the transition between motile planktonic and sessile biofilm-associated lifestyles in Pseudomonas aeruginosa. (Technischen Universität Carolo-Wilhelmina).
118. Kay E, et al. (2006) Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. Journal of bacteriology 188(16):6026-6033.
119. Canters GW, Lommen A, Kamp Mvd, & Hoitink CWG (1990) Structure and reactivity of type-I copper sites. Biology of metals 3:6.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用新式三維細胞培養系統研究癌症與組織工程中異種細胞間交互作用
2. 治療性anti-IgE單株抗體藥物在體外重組模式及體內基因轉殖鼠之藥理作用機制
3. 建構並鑑定創傷弧菌調控子LytR的突變株
4. 創傷弧菌YJ016中調控環狀雙鳥嘌呤單磷酸相關的 vva0325-36基因群功能分析
5. DTriP-22抑制腸病毒71型之機制探討
6. 細菌基因表現之調控: HptB磷酸根轉移系統與三磷酸腺苷水解功能必須之轉錄蛋白AcoK之功能分析
7. 比較分析綠膿桿菌兩個尿嘧啶雙磷酸葡萄糖去氫酶
8. 標的表現IgE的B淋巴細胞以調控IgE之生成
9. 克雷白氏肺炎桿菌第三型線毛主要單體蛋白MrkA—線毛組裝有關區域之搜尋以及於呈現系統發展之應用
10. 綠膿桿菌HptB訊息傳遞路徑-雜合感應子之分析及下游基因之搜尋
11. 克雷白氏肺炎桿菌磷酸酪胺酸激酶KpWzc對其下游酵素ManC, Gnd活性影響之分析與Ugd磷酸酪胺酸殘基鑑定與下游受質之搜尋
12. 克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構
13. Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 strain
14. 利用磁性粒子與光敏性水膠建構特殊細胞排列的組織
15. 創傷弧菌外毒素RtxA 高量甘氨酸-天門冬氨酸區域人源單鏈抗體之篩選以及此區域的細胞表面結合特性之研究
 
* *