|
1. Huggins, C. and C.V. Hodges, Studies on prostatic cancer. The Journal of Urology. 167(2): p. 948-951. 2. Debes, J.D. and D.J. Tindall, Mechanisms of androgen-refractory prostate cancer. N Engl J Med, 2004. 351(15): p. 1488-90. 3. Petrylak, D.P., et al., Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med, 2004. 351(15): p. 1513-20. 4. Chuu, C.P., et al., Inhibition of tumor growth and progression of LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer Res, 2006. 66(13): p. 6482-6. 5. Zelcer, N. and P. Tontonoz, Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest, 2006. 116(3): p. 607-14. 6. Simons, K. and D. Toomre, Lipid rafts and signal transduction. Nat Rev Mol Cell Biol, 2000. 1(1): p. 31-9. 7. Ettinger, S.L., et al., Dysregulation of Sterol Response Element-Binding Proteins and Downstream Effectors in Prostate Cancer during Progression to Androgen Independence. Cancer Research, 2004. 64(6): p. 2212-2221. 8. Brown, A.J., CHOLESTEROL, STATINS AND CANCER. Clinical and Experimental Pharmacology and Physiology, 2007. 34(3): p. 135-141. 9. Swinnen, J.V., et al., Androgens, lipogenesis and prostate cancer. The Journal of Steroid Biochemistry and Molecular Biology, 2004. 92(4): p. 273-279. 10. Suburu, J. and Y.Q. Chen, Lipids and prostate cancer. Prostaglandins & Other Lipid Mediators, 2012. 98(1–2): p. 1-10. 11. Chuu, C.P., et al., Modulation of liver X receptor signaling as novel therapy for prostate cancer. J Biomed Sci, 2007. 14(5): p. 543-53. 12. Pommier, A.J., et al., Liver x receptors protect from development of prostatic intra-epithelial neoplasia in mice. PLoS Genet, 2013. 9(5): p. e1003483. 13. Guo, D., et al., An LXR Agonist Promotes Glioblastoma Cell Death through Inhibition of an EGFR/AKT/SREBP-1/LDLR–Dependent Pathway. Cancer Discovery, 2011. 1(5): p. 442-456. 14. Yamauchi, Y., et al., Positive feedback loop between PI3K-Akt-mTORC1 signaling and the lipogenic pathway boosts Akt signaling: induction of the lipogenic pathway by a melanoma antigen. Cancer Res, 2011. 71(14): p. 4989-97. 15. Zhang, Y., et al., Kinase AKT controls innate immune cell development and function. Immunology, 2013. 140(2): p. 143-152. 16. Liu, W., et al., Cacalol, a natural sesquiterpene, induces apoptosis in breast cancer cells by modulating Akt-SREBP-FAS signaling pathway. Breast Cancer Research and Treatment, 2011. 128(1): p. 57-68. 17. Luu, W., et al., Akt acutely activates the cholesterogenic transcription factor SREBP-2. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2012. 1823(2): p. 458-464. 18. Fu, W., et al., LXR Agonist Regulates the Carcinogenesis of PCa via the SOCS3 Pathway. Cellular Physiology and Biochemistry, 2014. 33(1): p. 195-204. 19. Akira, S. and K. Takeda, Toll-like receptor signalling. Nat Rev Immunol, 2004. 4(7): p. 499-511. 20. Naugler, W.E., et al., Gender Disparity in Liver Cancer Due to Sex Differences in MyD88-Dependent IL-6 Production. Science, 2007. 317(5834): p. 121-124. 21. Rakoff-Nahoum, S. and R. Medzhitov, Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science, 2007. 317(5834): p. 124-7. 22. Liang, B., et al., Myeloid Differentiation Factor 88 Promotes Growth and Metastasis of Human Hepatocellular Carcinoma. Clinical Cancer Research, 2013. 19(11): p. 2905-2916. 23. Jia, R.J., et al., Enhanced myeloid differentiation factor 88 promotes tumor metastasis via induction of epithelial-mesenchymal transition in human hepatocellular carcinoma. Cell Death Dis, 2014. 5: p. e1103. 24. Zhou, B.P., et al., Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol, 2004. 6(10): p. 931-40. 25. Bachelder, R.E., et al., Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol, 2005. 168(1): p. 29-33. 26. Rigoglou, S. and A.G. Papavassiliou, The NF-κB signalling pathway in osteoarthritis. The International Journal of Biochemistry & Cell Biology, 2013. 45(11): p. 2580-2584. 27. Mori, K., et al., DU145 human prostate cancer cells express functional receptor activator of NFkappaB: new insights in the prostate cancer bone metastasis process. Bone, 2007. 40(4): p. 981-90. 28. Barbera, M.J., et al., Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene, 2004. 23(44): p. 7345-54. 29. Mak, P., et al., ERβ Impedes Prostate Cancer EMT by Destabilizing HIF-1α and Inhibiting VEGF-Mediated Snail Nuclear Localization: Implications for Gleason Grading. Cancer Cell, 2010. 17(4): p. 319-332. 30. Cano, A., et al., The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000. 2(2): p. 76-83. 31. Wen, Y.-C., et al., Snail as a potential marker for predicting the recurrence of prostate cancer in patients at stage T2 after radical prostatectomy. Clinica Chimica Acta, 2014. 431(0): p. 169-173. 32. Wang, Y., et al., The Role of Snail in EMT and Tumorigenesis. Curr Cancer Drug Targets, 2013. 13(9): p. 963-72. 33. Fukuchi, J., et al., Antiproliferative Effect of Liver X Receptor Agonists on LNCaP Human Prostate Cancer Cells. Cancer Research, 2004. 64(21): p. 7686-7689. 34. McCawley, L.J. and L.M. Matrisian, Matrix metalloproteinases: they're not just for matrix anymore! Current Opinion in Cell Biology, 2001. 13(5): p. 534-540. 35. Chantrain, C.F., et al., Stromal Matrix Metalloproteinase-9 Regulates the Vascular Architecture in Neuroblastoma by Promoting Pericyte Recruitment. Cancer Research, 2004. 64(5): p. 1675-1686. 36. Nelson, A.R., et al., Matrix Metalloproteinases: Biologic Activity and Clinical Implications. Journal of Clinical Oncology, 2000. 18(5): p. 1135. 37. Krycer, J.R. and A.J. Brown, Cholesterol accumulation in prostate cancer: A classic observation from a modern perspective. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2013. 1835(2): p. 219-229. 38. Friedl, P. and K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer, 2003. 3(5): p. 362-74. 39. Tontonoz, P. and D.J. Mangelsdorf, Liver X receptor signaling pathways in cardiovascular disease. Mol Endocrinol, 2003. 17(6): p. 985-93. 40. Trasino, S.E., Y.S. Kim, and T.T.Y. Wang, Ligand, receptor, and cell type–dependent regulation of ABCA1 and ABCG1 mRNA in prostate cancer epithelial cells. Molecular Cancer Therapeutics, 2009. 8(7): p. 1934-1945. 41. Bensinger, S.J., et al., LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell, 2008. 134(1): p. 97-111. 42. Wang, N., et al., LXR-Induced Redistribution of ABCG1 to Plasma Membrane in Macrophages Enhances Cholesterol Mass Efflux to HDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006. 26(6): p. 1310-1316. 43. Klucken, J., et al., ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci U S A, 2000. 97(2): p. 817-22. 44. Rough, J.J., et al., Anti-proliferative effect of LXR agonist T0901317 in ovarian carcinoma cells. J Ovarian Res, 2010. 3: p. 13. 45. Nieva, C., et al., The lipid phenotype of breast cancer cells characterized by Raman microspectroscopy: towards a stratification of malignancy. PLoS One, 2012. 7(10): p. e46456. 46. Bouraoui, Y., et al., Profile of NF-kappaBp(65/NFkappaBp50) among prostate specific antigen sera levels in prostatic pathologies. Pathol Biol (Paris), 2012. 60(5): p. 301-5. 47. Lee, Shuet T., et al., Context-Specific Regulation of NF-κB Target Gene Expression by EZH2 in Breast Cancers. Molecular Cell, 2011. 43(5): p. 798-810. 48. Ling, J. and R. Kumar, Crosstalk between NFkB and glucocorticoid signaling: a potential target of breast cancer therapy. Cancer Lett, 2012. 322(2): p. 119-26. 49. Hers, I., E.E. Vincent, and J.M. Tavaré, Akt signalling in health and disease. Cellular Signalling, 2011. 23(10): p. 1515-1527. 50. Murtola, T.J., et al., The importance of LDL and cholesterol metabolism for prostate epithelial cell growth. PLoS One, 2012. 7(6): p. e39445. 51. Ni, J., et al., Role of the EpCAM (CD326) in prostate cancer metastasis and progression. Cancer Metastasis Rev, 2012. 31(3-4): p. 779-91. 52. Went, P.T.H., et al., Frequent EpCam protein expression in human carcinomas. Human Pathology, 2004. 35(1): p. 122-128. 53. Ni, J., et al., Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. The International Journal of Biochemistry & Cell Biology, 2013. 45(12): p. 2736-2748. 54. Ladu, S., et al., E2F1 Inhibits c-Myc-Driven Apoptosis via PIK3CA/Akt/mTOR and COX-2 in a Mouse Model of Human Liver Cancer. Gastroenterology, 2008. 135(4): p. 1322-1332. 55. Wang, H., et al., Stabilization of Snail through AKT/GSK-3β signaling pathway is required for TNF-α-induced epithelial–mesenchymal transition in prostate cancer PC3 cells. European Journal of Pharmacology, 2013. 714(1–3): p. 48-55. 56. Shibata, N. and C.K. Glass, Regulation of macrophage function in inflammation and atherosclerosis. J Lipid Res, 2009. 50 Suppl: p. S277-81. 57. Ogawa, S., et al., Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell, 2005. 122(5): p. 707-21.
|