帳號:guest(18.225.255.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃韻芳
作者(外文):Huang, Yun-Fang
論文名稱(中文):探討螺旋區域上鹼性殘基對果蠅脂肪酸結合蛋白熱穩定性及脂肪酸結合之影響
論文名稱(外文):Basic residues in helical region affect protein stability and ligand binding in Drosophila Fatty Acid Binding Protein
指導教授(中文):呂平江
指導教授(外文):Lyu, Ping-Chiang
口試委員(中文):徐尚德
楊立威
口試委員(外文):Shang-Te Danny Hsu
Lee-Wei Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:101080534
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:69
中文關鍵詞:果蠅蛋白點突變熱穩定性蛋白二級結構序列比對螺旋區域正電荷排斥配體入口
外文關鍵詞:Drosophila ProteinsMutagenesis, Site-DirectedThermostabilityProtein Secondary StructureSequence AlignmentHelical regionPositive charge repulsionLigand entrance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:58
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
果蠅脂肪結合蛋白結構和脂肪結合蛋白家族具高度相似性,主要由十個β-平板和兩個α-螺旋組成,其涉及調控睡眠以及長期記憶相關的基因表現。在實驗室先前的研究中,已知其對長鏈不飽和脂肪酸有專一性,並驗證Tyr127及Arg125為脂肪酸重要結合位置之一。從蛋白結構的表面電性可以觀察到,α-螺旋上有正電荷群聚的現象,而此蓋狀區域被認為與調控脂肪酸的出入有關。因此,我們將此區域的鹼性胺基酸個別點突變使之不帶電性 (K21A、R30A及K31A),探討其結構與功能上的變化。從旋光儀實驗結果中可得知,突變後仍維持與原生型相同的二級結構,但在蛋白熱降解實驗中,卻觀察到Tm大幅增加至20℃的情形。顯示消除α-螺旋上任一正電排斥力,皆可使熱穩定性變好。等溫滴定量熱儀 (ITC) 偵測脂質結合能力,突變對油酸 (OA) 的結合能力與原生型相似,但位於α-Ⅱ上的R30A及K31A對二十二碳六烯酸 (DHA) 結合能力卻較原生型差。由此推知,突變雖增加蛋白的熱穩定性,使結構變的更緊密,但相對的,可能因此降低了蛋白的彈性,進而影響脂肪酸的進入,尤其是位於入口上方的α-Ⅱ突變-R30A及K31A。綜合以上,原生型α-螺旋區域上,這些不穩定的正電聚集現象,是提供彈性的主要因子,調控脂肪結合蛋白的脂肪酸結合入口區域。搭配模型與晶體結構上的觀察與測量,可以和此現象相互佐證。此外,從熱穩定和限制酵素剪切實驗,我們也發現脂質結合可以增強原生型的結構穩定性。而從螺旋型蛋白結構區域間作用力上,我們還發現D17其負電荷與R30、K31及N34皆有氫键交互作用力,除了可降低的排斥力外,其也可能作為鞏固兩螺旋型蛋白結構之間的橋樑,此部分值得更進一步的探討。
Drosophila melanogaster Fatty acid-binding protein (dFABP) comprises ten antiparallel β-strands and two α-helixes which is the typical structural feature of FABP family. dFABP was found to play an important role in long-term memory formation recently. In our previous studies, we have identified the critical residue-Y127 and R125 of binding sites in the β-barrel region. The helical region of FABP is referred to as the ligand entering site. Basic residues in this region are considered to be involved in membrane interaction and also act as nuclear location signal. In order to investigate the role of these basic amino acids, we replaced residues K21A, R30A and K31A with alanine using site-directed mutagenesis. The secondary structures of mutants are similar to wild-type dFABP. However, the melting temperature measured by circular dichorism shows a significant increase for all of three mutants. The enhancement of thermal stability may due to the elimination of repulsive force of positive charges on the helical region. Furthermore, isothermal titration calorimetry was employed to examine the binding ability toward fatty acids. Although the binding constant for oleic acid (OA) are similar, R30A and K31A, both on α-II helix, shows a ten-fold decrease in binding affinity to docosahexaenoic acid (DHA) compared to the wild-type dFABP. Our results indicate that basic residues in α-II region play the important role in modulating entrance for ligand binding. The binding affinity of dFABP is carefully balanced between structural stability and flexibility.
中文摘要 I
Abstract II
Acknowledgement III
Contents IV
List of Figures VII
Abbreviations 1
Keywords 1
Chapter 1. Introduction 2
1.1 Classification of fatty acid binding protein family 2
1.2 Structure-related function of FABP family 3
1.3 Function and structure analysis of Drosophila FABP 5
1.4 Motivation 6
Chapter 2. Materials and Methods 7
2.1 Protein construction, recombinant and mutagenesis of dFABP 7
2.2 Protein expression and purification 7
2.2.1 Protein expression 7
2.2.2 Protein purification 8
2.3 Identification of dFABP purity 9
2.3.1 Tricine SDS-PAGE 9
2.3.2 MALDI-TOF MS analysis 10
2.4 Quantification of protein concentration 10
2.5 Nuclear magnetic resonance spectroscopy 10
2.6 Circular dichroism spectroscopy 11
2.7 Isothermal titration calorimetry 12
2.8 Limited proteolysis assay 13
2.9 Molecular modeling and entrance calculation 13
Chapter 3. Results and Discussions 15
3.1 Improvement of purification procedure 15
3.2 Biophysical properties of holo-form dFABP 16
3.2.1 Isothermal titration calorimetry binding assay of wild-type dFABP 16
3.2.2 Thermostability of holo-form dFABP 17
3.2.3 Limited proteolysis resistance 17
3.3 Mutating basic residues in helical region 18
3.3.1 Analysis helical region of dFABP by molecular modeling 18
3.3.2 Construction of mutant dFABP – K21A, R30A, K31A 19
3.3.3 Secondary structure comparison of mutants with wild-type dFABP 19
3.3.4 Thermostability of apo-form mutants 20
3.3.5 Thermostability of holo-form mutants 21
3.3.6 Isothermal titration calorimetry binding assay of mutants 21
3.4 Crystal structure of dFABP analysis 22
3.4.1 Comparison of x-ray structure with model structure 22
3.4.2 B-factor of dFABP x-ray structure 22
3.4.3 Local interaction forces in helical region 22
3.5 Entrance hypothesis 23
3.6 Entrance measurement 23
Chapter 4. Conclusion 25
Figures 26
Tables 58
Table 1: Human fatty acid binding protein genes 58
Table 2: Holo-form crystal structures of FABP 59
Table 3: Binding constants and Gibbs free energy changes of fatty acids binding to dFABP and mutants 60
Table 4: Melting temperature of dFABP and Mutants 61
Reference 62
Appendixes 68
Appendix 1: The PCR materials and program for site-directed mutagenesis 68
Appendix 2: The programs for purification by using AKTA Prime 69
1. Bernlohr, D.A., et al., Intracellular lipid-binding proteins and their genes. Annu Rev Nutr, 1997. 17: p. 277-303.
2. Rademacher, M., et al., Solution structure of fatty acid-binding protein from human brain. Mol Cell Biochem, 2002. 239(1-2): p. 61-8.
3. Marcelino, A.M., R.G. Smock, and L.M. Gierasch, Evolutionary coupling of structural and functional sequence information in the intracellular lipid-binding protein family. Proteins, 2006. 63(2): p. 373-84.
4. Smathers, R.L. and D.R. Petersen, The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics, 2011. 5(3): p. 170-91.
5. Storch, J. and A.E. Thumser, Tissue-specific functions in the fatty acid-binding protein family. J Biol Chem, 2010. 285(43): p. 32679-83.
6. Ayers, S.D., et al., Continuous nucleocytoplasmic shuttling underlies transcriptional activation of PPARgamma by FABP4. Biochemistry, 2007. 46(23): p. 6744-52.
7. Saltiel, A.R. and C.R. Kahn, Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001. 414(6865): p. 799-806.
8. Funk, C.D., Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 2001. 294(5548): p. 1871-5.
9. Hotamisligil, G.S., Inflammation and metabolic disorders. Nature, 2006. 444(7121): p. 860-7.
10. Serhan, C.N., Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol, 2007. 25: p. 101-37.
11. Makowski, L. and G.S. Hotamisligil, Fatty acid binding proteins--the evolutionary crossroads of inflammatory and metabolic responses. J Nutr, 2004. 134(9): p. 2464S-2468S.
12. Storch, J. and A.E. Thumser, The fatty acid transport function of fatty acid-binding proteins. Biochim Biophys Acta, 2000. 1486(1): p. 28-44.
13. Zimmerman, A.W. and J.H. Veerkamp, New insights into the structure and function of fatty acid-binding proteins. Cell Mol Life Sci, 2002. 59(7): p. 1096-116.
14. Chmurzynska, A., The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet, 2006. 47(1): p. 39-48.
15. Furuhashi, M. and G.S. Hotamisligil, Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov, 2008. 7(6): p. 489-503.
16. Young, A.C., et al., Structural studies on human muscle fatty acid binding protein at 1.4 A resolution: binding interactions with three C18 fatty acids. Structure, 1994. 2(6): p. 523-34.
17. Xu, Z., D.A. Bernlohr, and L.J. Banaszak, Crystal structure of recombinant murine adipocyte lipid-binding protein. Biochemistry, 1992. 31(13): p. 3484-92.
18. LaLonde, J.M., et al., Adipocyte lipid-binding protein complexed with arachidonic acid. Titration calorimetry and X-ray crystallographic studies. J Biol Chem, 1994. 269(41): p. 25339-47.
19. Balendiran, G.K., et al., Crystal structure and thermodynamic analysis of human brain fatty acid-binding protein. J Biol Chem, 2000. 275(35): p. 27045-54.
20. Uyemura, K., T. Kato-Yamanaka, and K. Kitamura, Distribution and optical activity of the basic protein in bovine peripheral nerve myelin. J Neurochem, 1977. 29(1): p. 61-8.
21. Trapp, B.D., M. Dubois-Dalcq, and R.H. Quarles, Ultrastructural localization of P2 protein in actively myelinating rat Schwann cells. J Neurochem, 1984. 43(4): p. 944-8.
22. Thumser, A.E. and J. Storch, Liver and intestinal fatty acid-binding proteins obtain fatty acids from phospholipid membranes by different mechanisms. J Lipid Res, 2000. 41(4): p. 647-56.
23. Falomir-Lockhart, L.J., et al., Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process. J Biol Chem, 2006. 281(20): p. 13979-89.
24. Herr, F.M., et al., Surface lysine residues modulate the collisional transfer of fatty acid from adipocyte fatty acid binding protein to membranes. Biochemistry, 1995. 34(37): p. 11840-5.
25. Herr, F.M., J. Aronson, and J. Storch, Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes. Biochemistry, 1996. 35(4): p. 1296-303.
26. Storch, J. and B. Corsico, The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu Rev Nutr, 2008. 28: p. 73-95.
27. Shen, W.J., et al., Interaction of rat hormone-sensitive lipase with adipocyte lipid-binding protein. Proc Natl Acad Sci U S A, 1999. 96(10): p. 5528-32.
28. Scheja, L., et al., Altered insulin secretion associated with reduced lipolytic efficiency in aP2-/- mice. Diabetes, 1999. 48(10): p. 1987-94.
29. Coe, N.R., M.A. Simpson, and D.A. Bernlohr, Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J Lipid Res, 1999. 40(5): p. 967-72.
30. Hertzel, A.V., A. Bennaars-Eiden, and D.A. Bernlohr, Increased lipolysis in transgenic animals overexpressing the epithelial fatty acid binding protein in adipose cells. J Lipid Res, 2002. 43(12): p. 2105-11.
31. Smith, A.J., et al., Interaction of the adipocyte fatty acid-binding protein with the hormone-sensitive lipase: regulation by fatty acids and phosphorylation. J Biol Chem, 2007. 282(44): p. 32424-32.
32. Smith, A.J., et al., Mapping of the hormone-sensitive lipase binding site on the adipocyte fatty acid-binding protein (AFABP). Identification of the charge quartet on the AFABP/aP2 helix-turn-helix domain. J Biol Chem, 2008. 283(48): p. 33536-43.
33. Wolfrum, C., et al., Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha - and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci U S A, 2001. 98(5): p. 2323-8.
34. Tan, N.S., et al., Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol, 2002. 22(14): p. 5114-27.
35. Gillilan, R.E., S.D. Ayers, and N. Noy, Structural basis for activation of fatty acid-binding protein 4. J Mol Biol, 2007. 372(5): p. 1246-60.
36. Gerstner, J.R., et al., Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila. PLoS One, 2011. 6(1): p. e15890.
37. Gerstner, J.R., et al., Cytoplasmic to nuclear localization of fatty-acid binding protein correlates with specific forms of long-term memory in Drosophila. Commun Integr Biol, 2011. 4(5): p. 623-6.
38. Schagger, H. and G. von Jagow, Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem, 1987. 166(2): p. 368-79.
39. Schagger, H., Tricine-SDS-PAGE. Nat Protoc, 2006. 1(1): p. 16-22.
40. Gogstad, G.O. and M.B. Krutnes, Measurement of protein in cell suspensions using the Coomassie brilliant blue dye-binding assay. Anal Biochem, 1982. 126(2): p. 355-9.
41. Knochenmuss, R., G. McCombie, and M. Faderl, Ion yields of thin MALDI samples: dependence on matrix and metal substrate and implications for models. J Phys Chem A, 2006. 110(47): p. 12728-33.
42. Begg, G.E. and D.W. Speicher, Mass spectrometry detection and reduction of disulfide adducts between reducing agents and recombinant proteins with highly reactive cysteines. J Biomol Tech, 1999. 10(1): p. 17-20.
43. Smith, P.K., et al., Measurement of protein using bicinchoninic acid. Anal Biochem, 1985. 150(1): p. 76-85.
44. Johnson, W.C., Jr., Protein secondary structure and circular dichroism: a practical guide. Proteins, 1990. 7(3): p. 205-14.
45. Woody, R.W., Circular dichroism. Methods Enzymol, 1995. 246: p. 34-71.
46. Greenfield, N.J., Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc, 2006. 1(6): p. 2527-35.
47. Wiseman, T., et al., Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem, 1989. 179(1): p. 131-7.
48. Hubbard, S.J., The structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta, 1998. 1382(2): p. 191-206.
49. Moldoveanu, T., et al., Ca(2+)-induced structural changes in rat m-calpain revealed by partial proteolysis. Biochim Biophys Acta, 2001. 1545(1-2): p. 245-54.
50. Arnold, K., et al., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006. 22(2): p. 195-201.
51. Guex, N. and M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997. 18(15): p. 2714-23.
52. Chovancova, E., et al., CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol, 2012. 8(10): p. e1002708.
53. Porfido, J.L., et al., Direct interaction between EgFABP1, a fatty acid binding protein from Echinococcus granulosus, and phospholipid membranes. PLoS Negl Trop Dis, 2012. 6(11): p. e1893.
54. Velkov, T., et al., An improved method for the purification of rat liver-type fatty acid binding protein from Escherichia coli. Protein Expr Purif, 2005. 44(1): p. 23-31.
55. Zhang, J., et al., Mutating the charged residues in the binding pocket of cellular retinoic acid-binding protein simultaneously reduces its binding affinity to retinoic acid and increases its thermostability. Proteins, 1992. 13(2): p. 87-99.
56. Jamison, R.S., M.E. Newcomer, and D.E. Ong, Cellular retinoid-binding proteins: limited proteolysis reveals a conformational change upon ligand binding. Biochemistry, 1994. 33(10): p. 2873-9.
57. Sacchettini, J.C., J.I. Gordon, and L.J. Banaszak, Crystal structure of rat intestinal fatty-acid-binding protein. Refinement and analysis of the Escherichia coli-derived protein with bound palmitate. J Mol Biol, 1989. 208(2): p. 327-39.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *