帳號:guest(3.15.18.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王仲康
作者(外文):Wang, Chung-Kang
論文名稱(中文):探討Derlin蛋白C-端的SHP box及α-domain之功能
論文名稱(外文):Functional characterization of Derlin family member: The importance of SHP box and C-terminal α-domain
指導教授(中文):桑自剛
指導教授(外文):Sang, Tzu-Kang
口試委員(中文):徐瑞洲
張慧雲
桑自剛
口試委員(外文):Jui-Chou Hsu
Hui-yun Chang
Tzu-Kang Sang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:101080530
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:46
中文關鍵詞:細胞凋亡果蠅內質網相關降解內質網壓力
外文關鍵詞:apoptosisDrosophilaERADER stressDerlin-1
相關次數:
  • 推薦推薦:0
  • 點閱點閱:135
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Endoplasmic reticulum-associated protein degradation (ERAD)是重要的細胞機制。它主要用以降解細胞中發生錯誤摺疊的蛋白。錯誤摺疊的蛋白在內質網中被辨識後會經由膜上的通道蛋白送至細胞質中,再經過泛化作用(Ubiquitination)後經由蛋白酶體(proteasome)降解。ERAD執行的過程有許多蛋白成員參與,其中我們相當關注名為Derlin的蛋白家族。Derlin蛋白具有數個穿膜蛋白序列,因此被認為可能構成ERAD的通道,使得錯誤摺疊蛋白能夠經由通道送出內質網。此外,這個作用還需要一種被稱為VCP的蛋白參與。VCP是一種AAA ATPase他會與幾種不同的協同因子(cofactors)形成複合體,將錯誤摺疊的蛋白帶往蛋白酶體(proteasome)降解。VCP是如何前往內質網並帶離錯誤摺疊蛋白的機制仍不清楚,不過藉由免疫螢沉澱(immunoprecipitation)以及pull down實驗,我驗證了Derlin-1 C端的SHP box在形成Derlin-1/TER94(VCP在果蠅上的同源蛋白)複合物的作用上相當重要。有趣的是Derlin家族的的另一個蛋白Derlin-2也有類似的SHP box序列,但它沒有辦法與TER94形成複合物。而這個樣的差異可能是Derlin-2沒有辦法像Derlin-1一樣去抑制TER94A229E病變的原因。在我的研究中發現利用點突變修改Derlin-2的SHP box可以使與TER94形成complex的能力恢復,這個令人振奮的發現可以重新定義對於SHP box序列的認知。此外,在我的研究中也探討了Derlin-1與Derlin-2 C端結構上α螺旋結構的差異以及這個α螺旋結構在調控內質網平衡的重要意義。在觀察ER stress與Derlin之間的關聯性之後,我發現Derlin-1在調控上下游的其他細胞路徑都有重要的功用,而Derlin-2與Derlin-1相比,在ERAD上所扮演的可能是更偏向通道結構的角色
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a cellular process for protein quality control which targets misfolded proteins of the ER for ubiqutination and subsequent proteasome degradation in the cytosol. Derlin family proteins are ER transmembrane protein that could form channel to function as the aforementioned dislocation passage. This process also requires p97/VCP (also known as TER94 in fly), a multi-functional AAA ATPase, which forms complexes with different cofactors to remove the targeted protein from ER. Currently, it is unclear how p97/VCP being recruited to the ER for removing the misfolded proteins. Using immunoprecipitation and pull-down studies, I demonstrated the SHP box (also known as binding site 1 (BS1)) at the C-terminus of fly Derlin-1 is critical for TER94 interaction in which the N-domain of TER94/VCP plays as a binding counterpart of this interaction. Interestingly, another Derlin family protein Derlin-2, which has extensive similarity with Derlin-1, includes the conserved SHP box sequence, and is also involving in ERAD pathway, failed to bind TER94. This TER94-binding discrepancy is functionally important because in a Drosophila model, overexpressing fly Derlin-1, but not Derlin-2, impairs ERAD which suggests that Derlin-1 might negatively regulate ERAD. Furthermore, Derlin-1-mediated dominant phenotype could be suppressed by overexpressing TER94 or human VCP. Surprisingly, I modulated the Derlin-2 SHP box residue and the interaction of Derlin-2 and TER94 dramatically increased, redefining the originally proposed SHP box sequence. This study suggests that Derlin-1 and Derlin-2, despite of their high homology and could cooperatively form a channel for dislocating misfolded protein, may function differently during ERAD processing in terms of recruiting p97/VCP ATPase and feedback regulation.
Table of Contents
Abstract i
中文摘要 iii
致謝 iv
Table of Contents vii
Introduction 1
Materials and Methods 5
Cloning and construct of the recombinant plasmid 5
Drosophila genetics and protein extraction 5
Dissection and Immunohistochemistry 6
IPTG induction 6
GST pull down assay 6
Immunoblotting analysis 7
The mRNA extraction and RT-PCR analysis 8
Results 9
Production of GST-Derlin-1 fusion proteins in bacteria 9
Derlin-1 carboxyl terminus and TER94 N-L1 domain are critical for Derlin-1/TER94 binding 10
ER association is crucial for Derlin-1 to suppress TER94A229E 11
Modified Derlin-2 does bind to TER94 directly 12
Derlin-2 expression fails to induce ER stress and cytotoxicity 12
ER stress induces Derlin-1 but not Derlin-2 expression 13
A novel ERAD reporter GFP-PRC1-1 for ERAD-L 14
Discussion 16
The counterbalance between Derlin-1 and TER94/VCP 16
Analysis of Derlin-2 and its function 17
Figure legend 19
Figure 1. Description of the ERAD mechanism 19
Figure 2. Derlin-1 C-terminus interacts with TER94 through SHP box in Derlin-1 and N-L1 domain in TER94. 22
Figure 3. The genetic test for Derlin-1 and TER94A229E expression 24
Figure 4. Modified Derlin-2 bind to TER94 directly. 26
Figure 5. Derlin-2 expression modification fails to induce ER stress. 28
Figure 6. Tunicamycin treatment induce Derlin-1 and Bip, but fail to rise the Derlin-2 expression. 32
Figure 7. A novel ERAD reporter GFP-PRC1-1 for ERAD-L. 34
References 36
1. Dai RM, Li CC (2001) Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nature cell biology 3: 740-744.
2. Cao K, Nakajima R, Meyer HH, Zheng Y (2003) The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis. Cell 115: 355-367.
3. Latterich M, Frohlich KU, Schekman R (1995) Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82: 885-893.
4. Rabouille C, Levine TP, Peters JM, Warren G (1995) An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82: 905-914.
5. Rape M, Hoppe T, Gorr I, Kalocay M, Richly H, et al. (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107: 667- 677.
6. Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414: 652-656.
7. Jarosch E, Geiss-Friedlander R, Meusser B, Walter J, Sommer T (2002) Protein dislocation from the endoplasmic reticulum--pulling out the suspect. Traffic 3: 530-536.
8. Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. The Journal of cell biology 162: 71-84.
9. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, et al. (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nature genetics 36: 377-381.
10. Halawani D, LeBlanc AC, Rouiller I, Michnick SW, Servant MJ, et al. (2009) Hereditary inclusion body myopathy-linked p97/VCP mutations in the NH2 domain and the D1 ring modulate p97/VCP ATPase activity and D2 ring conformation. Molecular and cellular biology 29: 4484- 4494.
11. Manno A, Noguchi M, Fukushi J, Motohashi Y, Kakizuka A (2010) Enhanced ATPase activities as a primary defect of mutant valosincontaining proteins that cause inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Genes to cells : devoted to molecular & cellular mechanisms 15: 911-922. 31
12. Niwa H, Ewens CA, Tsang C, Yeung HO, Zhang X, et al. (2012) The role of the N-domain in the ATPase activity of the mammalian AAA ATPase p97/VCP. The Journal of biological chemistry 287: 8561-8570.
13. Chang YC, Hung WT, Chang HC, Wu CL, Chiang AS, et al. (2011) Pathogenic VCP/TER94 alleles are dominant actives and contribute to neurodegeneration by altering cellular ATP level in a Drosophila IBMPFD model. PLoS genetics 7: e1001288.
14. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429: 834-840.
15. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429: 841-847.
16. Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata K, et al. (2006) Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. The Journal of cell biology 172: 383-393.
17. Hitt R, Wolf DH (2004) Der1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. FEMS yeast research 4: 721-729.
18. Mehnert M, Sommer T, Jarosch E (2014) Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane. Nature cell biology 16: 77-86.
19. Greenblatt EJ, Olzmann JA, Kopito RR (2011) Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum. Nature structural & molecular biology 18: 1147-1152.
20. Ye Y, Shibata Y, Kikkert M, van Voorden S, Wiertz E, et al. (2005) Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proceedings of the National Academy of Sciences of the United States of America 102: 14132-14138. 32
21. Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126: 361-373.
22. arvalho P, Stanley AM, Rapoport TA (2010) Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143: 579-591.
23. Sato BK, Hampton RY (2006) Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis. Yeast 23: 1053-1064.
24. Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, et al. (2010) VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6: 217-227.
25. Menendez-Benito V, Verhoef LG, Masucci MG, Dantuma NP (2005) Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. Human molecular genetics 14: 2787-2799.
26. Leber JH, Bernales S, Walter P (2004) IRE1-independent gain control of the unfolded protein response. PLoS biology 2: E235.
27. Lee AS (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35: 373-381.
28. Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW (2006) Local caspase activity directs engulfment of dendrites during pruning. Nature neuroscience 9: 1234-1236.
29. Girardot F, Monnier V, Tricoire H (2004) Genome wide analysis of common and specific stress responses in adult drosophila melanogaster. BMC genomics 5: 74.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *