帳號:guest(18.226.172.230)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):倪婉晴
作者(外文):Ni, Wan Ching
論文名稱(中文):砷活化切絲蛋白訊號傳遞途徑
論文名稱(外文):The signal transduction pathway for arsenite-induced cofilin activation
指導教授(中文):林立元
指導教授(外文):Lin, Lih Yuan
口試委員(中文):李易展
趙政漢
口試委員(外文):Lee, Yi Jang
Chao, Cheng Han
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:101080525
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:64
中文關鍵詞:切絲蛋白
外文關鍵詞:arsenitecofilin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:562
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
鎘、砷、鉛、汞為生物體非必需重金屬元素,攝取量過多時會對生物體造成嚴重毒害。文獻指出,鎘會影響細胞骨架中肌動蛋白絲的聚合,而肌動蛋白絲的聚合會受到切絲蛋白的調控。在先前實驗室的研究中發現,鎘的刺激會藉由PI3K/Rac1/PKD1/SSH1L途徑造成切絲蛋白活化。因此,本論文試圖了解砷、鉛、汞在HEK293細胞中,是否對切絲蛋白活性產生影響及其相關訊號傳遞。研究中發現處理砷、鉛、汞後,切絲蛋白活性僅受砷調控活性上升,並發現PTEN在細胞中含量隨砷劑量上升而下降。PTEN在細胞中負責PI3K的負調控,因此我們觀察砷誘導切絲蛋白是否透過PTEN/PI3K。在細胞中表現PTEN或處理PI3K抑制劑,都無法影響砷處理下切絲蛋白活性。分析下游因子發現Rac1、RhoA及PKD1在砷誘導下,切絲蛋白活性皆不受影響。文獻指出Ras/Raf/MEK透過p21抑制ROCK來調控切絲蛋白。在砷刺激下發現ERK活性上升,但處理MEK抑制劑發現,切絲蛋白活性不受影響,並且發現細胞中p21蛋白質量不受砷影響,然而ROCK mRNA含量受砷刺激而下降。切絲蛋白活性主要受到LIMK及SSH1調控。處理砷後發現,SSH1L活性上升,LIMK1蛋白質含量下降。結果發現砷會透過ROCK/LIMK及SSH1L共同調控切絲蛋白活性。
Cadmium, arsenic, lead, and mercury are non-essential elements for plant or animal life. Excessive uptake may cause severe toxicological effect to organisms. Previous studies indicated that cadmium affects the polymerization of actin cytoskeleton. And the polymerization of actin filament is regulated by cofilin activity. Previous study from our laboratory indicated that cadmium treatment activates cofilin activity via PI3K/Rac1/PKD1/SSH1L cascade. We investigated in this study the effects of arsenite, lead, and mercury on cofilin activity and the involved signaling pathway in HEK293 cells. We found that the treatment of arsenite increased cofilin activity and decreased PTEN protein level. However, overexpression of PTEN did not affect arsenite-induced cofilin activation. PTEN is a negative regulator of PI3K pathway. Addition of PI3K inhibitor had also no effect on cofilin activity. Further study of downstream effectors indicated that Rac1, RhoA, and PKD1 was not involved in the activation pathway. Reportedly, cofilin activity modulates by ROCK through Ras/Raf/MEK/p21 pathway. We found that ERK would be activated in the treatment of arsenite. However, addition of MEK inhibitor did not affect arsenite-induced cofilin activity. We also found that p21 protein level in cells was not altered by arsenite but mRNA level of ROCK was decrease. On the other hand, cofilin activity is modulated mainly by LIMK and SSH1. We found that arsenite treatment increased SSH1L activity but decreased LIMK1 protein level. Our results indicated that ROCK/LIMK and SSH1L coordinately regulate arsenite-induced cofilin activation.
謝誌 2
目錄 3
中文摘要 4
英文摘要 5
緒論 6
材料與方法 15
結果 22
討論 32
參考資料 39
附圖 47
Acevedo K, Moussi N, Li R, Soo P, Bernard O (2006) LIM kinase 2 is widely expressed in all tissues. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 54: 487-501

Amano M, Nakayama M, Kaibuchi K (2010) Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton 67: 545-554

Ambach A, Saunus J, Konstandin M, Wesselborg S, Meuer SC, Samstag Y (2000) The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. European journal of immunology 30: 3422-3431

Bao L, Shi H (2010) Potential molecular mechanisms for combined toxicity of arsenic and alcohol. Journal of inorganic biochemistry 104: 1229-1233

Basu A, Mahata J, Gupta S, Giri AK (2001) Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutation research 488: 171-194

Bernard O (2007) Lim kinases, regulators of actin dynamics. The international journal of biochemistry & cell biology 39: 1071-1076

Bernstein BW, Bamburg JR (2010) ADF/Cofilin: a functional node in cell biology. Trends Cell Biol 20: 187-195

Bravo-Cordero JJ, Magalhaes MAO, Eddy RJ, Hodgson L, Condeelis J (2013a) Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Bio 14: 405-415

Bravo-Cordero JJ, Sharma VP, Roh-Johnson M, Chen XM, Eddy R, Condeelis J, Hodgson L (2013b) Spatial regulation of RhoC activity defines protrusion formation in migrating cells. J Cell Sci 126: 3356-3369

Cao WX, Goodarzi JP, De la Cruz EM (2006) Energetics and kinetics of cooperative cofilin-actin filament interactions. J Mol Biol 361: 257-267

Carlier MFT, Boujemaa R, Wiesner S, Loisel TP, Pantaloni D (2000) Mechanism of actin-based motility. Mol Biol Cell 11: 1A-1A

Coleman ML, Marshall CJ, Olson MF (2003) Ras promotes p21(Waf1/Cip1) protein stability via a cyclin D1-imposed block in proteasome-mediated degradation. The EMBO journal 22: 2036-2046

Dan C, Kelly A, Bernard O, Minden A (2001) Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. The Journal of biological chemistry 276: 32115-32121

Ding W, Hudson LG, Liu KJ (2005) Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes. Molecular and cellular biochemistry 279: 105-112

Doppler H, Bastea LI, Eiseler T, Storz P (2013) Neuregulin mediates F-actin-driven cell migration through inhibition of protein kinase D1 via Rac1 protein. The Journal of biological chemistry 288: 455-465

Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature cell biology 1: 253-259

Essler M, Amano M, Kruse HJ, Kaibuchi K, Weber PC, Aepfelbacher M (1998) Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. The Journal of biological chemistry 273: 21867-21874

Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420: 629-635

Frantz C, Barreiro G, Dominguez L, Chen XM, Eddy R, Condeelis J, Kelly MJS, Jacobson MP, Barber DL (2008) Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. J Cell Biol 183: 865-879

Gartel AL, Najmabadi F, Goufman E, Tyner AL (2000) A role for E2F1 in Ras activation of p21(WAF1/CIP1) transcription. Oncogene 19: 961-964

Go YM, Orr M, Jones DP (2013) Actin cytoskeleton redox proteome oxidation by cadmium. American journal of physiology Lung cellular and molecular physiology 305: L831-843

Gohla A, Birkenfeld J, Bokoch GM (2005) Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nature cell biology 7: 21-29

Hamadeh HK, Trouba KJ, Amin RP, Afshari CA, Germolec D (2002) Coordination of altered DNA repair and damage pathways in arsenite-exposed keratinocytes. Toxicological sciences : an official journal of the Society of Toxicology 69: 306-316

Izdebska M, Grzanka A, Ostrowski M, Zuryn A, Grzanka D (2009) Effect of arsenic trioxide (Trisenox) on actin organization in K-562 erythroleukemia cells. Folia Histochem Cyto 47: 453-459

Jockusch BM, Murk K, Rothkegel M (2007) The profile of profilins. Reviews of physiology, biochemistry and pharmacology 159: 131-149

Kim JS, Huang TY, Bokoch GM (2009) Reactive oxygen species regulate a slingshot-cofilin activation pathway. Molecular biology of the cell 20: 2650-2660

Kitchin KT, Ahmad S (2003) Oxidative stress as a possible mode of action for arsenic carcinogenesis. Toxicology letters 137: 3-13

Kiuchi T, Nagai T, Ohashi K, Mizuno K (2011) Measurements of spatiotemporal changes in G-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension. J Cell Biol 193: 365-380

Klamt F, Zdanov S, Levine RL, Pariser A, Zhang YQ, Zhang BL, Yu LR, Veenstra TD, Shacter E (2009) Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nature cell biology 11: 1241-U1193

Kligys K, Claiborne JN, DeBiase PJ, Hopkinson SB, Wu Y, Mizuno K, Jones JC (2007) The slingshot family of phosphatases mediates Rac1 regulation of cofilin phosphorylation, laminin-332 organization, and motility behavior of keratinocytes. The Journal of biological chemistry 282: 32520-32528

Kuhn JR, Pollard TD (2005) Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy. Biophys J 88: 1387-1402

Kurita S, Watanabe Y, Gunji E, Ohashi K, Mizuno K (2008) Molecular dissection of the mechanisms of substrate recognition and F-actin-mediated activation of cofilin-phosphatase Slingshot-1. The Journal of biological chemistry 283: 32542-32552

Lai A, Frishman WH (2005) Rho-kinase inhibition in the therapy of cardiovascular disease. Cardiology in review 13: 285-292

Lee S, Helfman DM (2004) Cytoplasmic p21(Cip1) is involved in ras-induced inhibition of the ROCK/LIMK/cofilin pathway. Journal of Biological Chemistry 279: 1885-1891

Li R, Soosairajah J, Harari D, Citri A, Price J, Ng HL, Morton CJ, Parker MW, Yarden Y, Bernard O (2006) Hsp90 increases LIM kinase activity by promoting its homo-dimerization. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20: 1218-1220

Lin T, Zeng L, Liu Y, DeFea K, Schwartz MA, Chien S, Shyy JY (2003) Rho-ROCK-LIMK-cofilin pathway regulates shear stress activation of sterol regulatory element binding proteins. Circulation research 92: 1296-1304

Lui WY, Mruk D, Lee WM, Cheng CY (2003) Sertoli cell tight junction dynamics: their regulation during spermatogenesis. Biology of reproduction 68: 1087-1097

Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285: 895-898

Manetti F (2012) LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators. Medicinal research reviews 32: 968-998

Mizuno K (2013) Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cellular signalling 25: 457-469

Moriyama K, Yahara I (2002) Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J Cell Sci 115: 1591-1601

Nagata-Ohashi K, Ohta Y, Goto K, Chiba S, Mori R, Nishita M, Ohashi K, Kousaka K, Iwamatsu A, Niwa R, Uemura T, Mizuno K (2004) A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. J Cell Biol 165: 465-471

Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environmental health perspectives 121: 295-302

Nishita M, Tomizawa C, Yamamoto M, Horita Y, Ohashi K, Mizuno K (2005) Spatial and temporal regulation of cofilin activity by LIM kinase and Slingshot is critical for directional cell migration. J Cell Biol 171: 349-359

Nishita M, Wang Y, Tomizawa C, Suzuki A, Niwa R, Uemura T, Mizuno K (2004) Phosphoinositide 3-kinase-mediated activation of cofilin phosphatase Slingshot and its role for insulin-induced membrane protrusion. The Journal of biological chemistry 279: 7193-7198

Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108: 233-246

Ono S, Mohri K, Ono K (2004) Microscopic evidence that actin-interacting protein 1 actively disassembles actin-depolymerizing factor/cofilin-bound actin filaments. Journal of Biological Chemistry 279: 14207-14212

Paavilainen VO, Bertling E, Falck S, Lappalainen P (2004) Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol 14: 386-394

Pan TL, Wang PW, Al-Suwayeh SA, Chen CC, Fang JY (2010) Skin toxicology of lead species evaluated by their permeability and proteomic profiles: a comparison of organic and inorganic lead. Toxicology letters 197: 19-28

Paul S, Das N, Bhattacharjee P, Banerjee M, Das JK, Sarma N, Sarkar A, Bandyopadhyay AK, Sau TJ, Basu S, Banerjee S, Majumder P, Giri AK (2013) Arsenic-induced toxicity and carcinogenicity: a two-wave cross-sectional study in arsenicosis individuals in West Bengal, India. Journal of exposure science & environmental epidemiology 23: 156-162

Peterburs P, Heering J, Link G, Pfizenmaier K, Olayioye MA, Hausser A (2009) Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like. Cancer research 69: 5634-5638

Philippar U, Roussos ET, Oser M, Yamaguchi H, Kim HD, Giampieri S, Wang YR, Goswami S, Wyckoff JB, Lauffenburger DA, Sahai E, Condeelis JS, Gertler FB (2008) A Mena Invasion Isoform Potentiates EGF-Induced Carcinoma Cell Invasion and Metastasis. Dev Cell 15: 813-828

Qian Y, Liu KJ, Chen Y, Flynn DC, Castranova V, Shi X (2005) Cdc42 regulates arsenic-induced NADPH oxidase activation and cell migration through actin filament reorganization. The Journal of biological chemistry 280: 3875-3884

Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O (2005) Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. Embo Journal 24: 473-486

Spratley SJ, Bastea LI, Doppler H, Mizuno K, Storz P (2011) Protein kinase D regulates cofilin activity through p21-activated kinase 4. The Journal of biological chemistry 286: 34254-34261

Tania N, Prosk E, Condeelis J, Edelstein-Keshet L (2011) A temporal model of cofilin regulation and the early peak of actin barbed ends in invasive tumor cells. Biophys J 100: 1883-1892

Toshima J, Toshima JY, Amano T, Yang N, Narumiya S, Mizuno K (2001) Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Molecular biology of the cell 12: 1131-1145

Vahter M (2002) Mechanisms of arsenic biotransformation. Toxicology 181-182: 211-217

Vendrell I, Carrascal M, Campos F, Abian J, Sunol C (2010) Methylmercury disrupts the balance between phosphorylated and non-phosphorylated cofilin in primary cultures of mice cerebellar granule cells. A proteomic study. Toxicology and applied pharmacology 242: 109-118

Wang Y, Shibasaki F, Mizuno K (2005) Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. The Journal of biological chemistry 280: 12683-12689

Wang Z, Wang M, Carr BI (2010) Involvement of receptor tyrosine phosphatase DEP-1 mediated PI3K-cofilin signaling pathway in sorafenib-induced cytoskeletal rearrangement in hepatoma cells. Journal of cellular physiology 224: 559-565

Wegner A, Isenberg G (1983) 12-fold difference between the critical monomer concentrations of the two ends of actin filaments in physiological salt conditions. Proceedings of the national academy of science of the United States of America 80: 4922-4925

Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villen J, Haas W, Kovacs JJ, Shukla AK, Hara MR, Hernandez M, Lachmann A, Zhao S, Lin Y, Cheng Y, Mizuno K, Ma'ayan A, Gygi SP, Lefkowitz RJ (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proceedings of the National Academy of Sciences of the United States of America 107: 15299-15304

Yamamoto M, Nagata-Ohashi K, Ohta Y, Ohashi K, Mizuno K (2006) Identification of multiple actin-binding sites in cofilin-phosphatase Slingshot-1L. FEBS letters 580: 1789-1794

Zhang JG, Pan XJ, Li N, Li X, Wang YC, Liu XZ, Yin XJ, Yu ZL (2014) Grape seed extract attenuates arsenic-induced nephrotoxicity in rats. Exp Ther Med 7: 260-266

Zhang YT, Ouyang DY, Xu LH, Zha QB, He XH (2013) Formation of cofilin-actin rods following cucurbitacin-B-induced actin aggregation depends on Slingshot homolog 1-mediated cofilin hyperactivation. Journal of cellular biochemistry 114: 2415-2429

Zhao JW, Gao ZL, Ji QY, Wang H, Zhang HY, Yang YD, Xing FJ, Meng LJ, Wang Y (2012) Regulation of cofilin activity by CaMKII and calcineurin. The American journal of the medical sciences 344: 462-472

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *