帳號:guest(3.144.224.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林佳瑩
作者(外文):Lin, Chia-Ying
論文名稱(中文):新穎性神經氨酸酶突變蛋白以提升異源型流感病毒之神經氨酸酶抑制性抗體與免疫保護力
論文名稱(外文):Novel Neuraminidase Mutants Proteins to Enhance Heterosubtypic NA-Inhibiting Antibodies and cross-protective immunity against influenza A virus
指導教授(中文):吳夙欽
指導教授(外文):Wu, Suh-Chin
口試委員(中文):詹家琮
黃立民
口試委員(外文):Jan, Jia-Tsrong
Huang, Li-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:101080524
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:47
中文關鍵詞:神經胺酸酶A型流感病毒
外文關鍵詞:NeuraminidaseInfluenza A virus
相關次數:
  • 推薦推薦:0
  • 點閱點閱:203
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
A型流行性感冒病毒的兩種主要表面醣蛋白:血球凝集素(hemagglutinin, HA)及神經氨酸酶(neuraminidase, NA)不斷地進行抗原漂變(antigenic drift)及移型(antigenic shift),因此A型流感病毒持續對全球健康造成威脅。每年季節性流感在人類導致嚴重的發病率及致死率。接種疫苗是當前控制A型流感病毒最有效的策略。相較於血球凝集素,神經氨酸酶抗原漂變率較低,且神經氨酸酶蛋白的酵素活化位序列具有高度的保守性。因此神經氨酸酶被廣泛地運用在藥物設計, 也被認為有潛力運用在流感疫苗的研發。近年來的文獻發現,神經氨酸酶抗體被認為具有對抗異型流感病毒感染的能力。本論文目的為利用桿狀病毒/昆蟲細胞表現系統,製備禽流感H5N1,pH1N1新興流感病毒及帶有 I149V, N344Y, I365T/ S366N及同時帶有四種(I149V, N344Y和I365T/ S366N)突變的pH1N1之神經氨酸酶重組蛋白,並以肌肉注射的方式,探討此重組蛋白於小鼠體內所引起的免疫原性(immunogenicity)。結果顯示,帶有I365T/S366N及四種(I149V, N344Y和I365T/ S366N) 突變的重組蛋白皆能於小鼠體內誘導產生對抗pH1N1, H5N1, H3N2及 H7N9病毒株的專一性神經氨酸酶抑制性抗體及提供免疫保護力。因此,我們認為帶有I365T/S366N及四種(I149V, N344Y and I365T/ S366N) 突變的重組蛋白是有潛力發展成為具交叉保護的流感疫苗候選抗原。
Influenza A virus remains a persistent threat to global health because of continuously antigen drift and shift of two major surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Every year, seasonal pandemics of influenza cause serious morbidity and mortality in human throughout the world. Vaccination is an important strategy to prevent from influenza virus infection. Compared to HA, NA is less antigenic drift and enzymatic active site of NA is highly conserved among different subtypes. Also, it is broadly used in drug design and it may be an ideal target for vaccine development. In recent study, NA is considered to provide heterosubtypic immunity. In this study, we produced H5N1-recombinant NA (rNA), pH1N1-rNA, pH1N1-rNA with I149V, N344Y, I365T/ S366N and tetra (I149V, N344Y and I365T/ S366N) mutants proteins using baculovirus-expression system. The immunogenicity of the pH1N1-rNA mutant proteins was investigated in BALB/c mice. Our results indicated that pH1N1-rNA with double mutants (I365T/S366N) and tetra mutants (I149V, N344Y and I365T/S366N) immunized group can induce the highest specific NA-inhibiting antibodies against homologous pH1N1 as well as heterosubtypic H5N1, H3N2 and H7N9 virus strains. Therefore, we suggested that double mutants (I365T/S366N) and tetra mutants (I149V, N344Y and I365T/S366N) of pH1N1-rNAs can be potential vaccine candidates for developing broadly-protective vaccines against influenza virus infection.
Content
中文摘要 I
Abstract II
致謝 III
Content IV
1. Introduction 1
1.1 Overview of Influenza viruses 1
1.2 Influenza A viruses Neuraminidase 2
1.3 NA-specific antibodies in influenza vaccine development 3
1.4 Study goals 4
2. Material and Methods 6
2.1 Cell lines 6
2.2 Bac-to-Bac® Baculovirus expression system 6
2.2.1 Construction of recombinant soluble NA proteins (rNA) 6
2.2.2 Site-directed mutagenesis PCR 7
2.2.3 Generating the recombinant Bacmids 9
2.2.4 Production of recombinant Baculovirus 10
2.3 Production and purification of soluble rNA proteins 10
2.3.1 Generation of the soluble rNA proteins 10
2.3.2 Purification of rNA proteins from supernatants 11
2.4 Characterize rNA proteins 12
2.4.1 Sodium dodecyl sulfate polyacrylamide (SDS-PAGE ) gel preparation and electrophoresis 12
2.4.2 Protein transfer and immuno-hybridization 12
2.5 Mouse immunization regimens 13
2.6 Fetuin-based rNA enzyme activity and Neuraminidase-inhibiting (NAi) assay 14
2.6.1 Detection of enzyme activity of rNA 14
2.6.2 Neuraminidase-inhibiting (NAi) antibodies assay 15
2.7 Enzyme-linked immunosorbent assay (ELISA) 16
2.8 Viral challenge 16
2.9 Statistic analysis 17
3. Results 18
3.1 Amino acid comparison between H5N1-NA and pH1N1-NA 18
3.2 Construction of soluble rNA protein of H5N1, pH1N1 and pH1N1 with the I149V, N344Y, I365T/S366N or tetra (I149V, N344Y, I365T/S366N) mutants 19
3.3 Characterization of the enzyme function of rNA proteins of H5N1, pH1N1 and pH1N1 with the I149V, N344Y, I365T/S366N or tetra (I149V, N344Y, I365T/S366N) mutants 20
3.4 NA-specific IgG antibodies induced by rNAs immunization 21
3.5 N1 Neuraminidase-inhibiting (NAi) antibodies elicited by wild-type or mutant rNA proteins immunizations against pH1N1 and H5N1 viruses 21
3.6 Heterosubtypic neuraminidase-inhibiting antibody elicited by wild-type or mutant rNA proteins immunizations against H3N2 and H7N9 viruses 23
3.7 Protective immunity against different subtypes of influenza viruses challenges 25
4. Discussion 27
5. References 32
6. Figures 36
Fig. 1 3D tetrameric structure of Neuraminidase and alignment of neuraminidase of pH1N1 and H5N1 viruses 36
Fig. 2 Construction, expression and characterization of wild-type or mutant recombinant Neuraminidase (rNA) proteins near enzymatic-sites 37
Fig. 3 The enzymatic activity of the of wild-type or mutant recombinant Neuraminidase (rNA) proteins 38
Fig. 5 NA-inhibiting antibodies elicited by wild-type or mutant rNA proteins immunization against homologous pH1N1 40
Fig. 6 NA-inhibiting antibodies elicited by wild-type or mutant rNA proteins immunization against heterosubtypic H5N1 VLPs 41
Fig. 7 NA-inhibiting antibodies elicited by wild-type or mutant rNA proteins immunization against heterosubtypic H3N2 viruses 42
Fig. 8 NA-inhibiting antibodies elicited by wild-type or mutant rNA proteins immunization against heterologous H7N9 VLPs 43
FIG. 9 Protective immunity of wild-type or mutant rNA proteins in mice by H1N1 viral challenges 44
FIG. 10 Protective immunity of wild-type or mutant rNA proteins in mice by H5N1 viral challenges 45
Fig. 11 Protective immunity of wild-type or mutant rNA proteins in mice by H7N9 viral challenges 46
Table 1. The enzyme kinetics of wild-type or mutant rNA proteins evaluted by Lineweaver-Burk plots 47

Air, G.M., 2012. Influenza neuraminidase. Influenza and other respiratory viruses 6, 245-256.
Beutner, K.R., Chow, T., Rubi, E., Strussenberg, J., Clement, J., Ogra, P.L., 1979. Evaluation of a neuraminidase-specific influenza A virus vaccine in children: antibody responses and effects on two successive outbreaks of natural infection. The Journal of infectious diseases 140, 844-850.
Bosch, B.J., Bodewes, R., de Vries, R.P., Kreijtz, J.H., Bartelink, W., van Amerongen, G., Rimmelzwaan, G.F., de Haan, C.A., Osterhaus, A.D., Rottier, P.J., 2010. Recombinant soluble, multimeric HA and NA exhibit distinctive types of protection against pandemic swine-origin 2009 A(H1N1) influenza virus infection in ferrets. Journal of virology 84, 10366-10374.
Brett, I.C., Johansson, B.E., 2005. Immunization against influenza A virus: comparison of conventional inactivated, live-attenuated and recombinant baculovirus produced purified hemagglutinin and neuraminidase vaccines in a murine model system. Virology 339, 273-280.
Butler, J., Hooper, K.A., Petrie, S., Lee, R., Maurer-Stroh, S., Reh, L., Guarnaccia, T., Baas, C., Xue, L., Vitesnik, S., Leang, S.K., McVernon, J., Kelso, A., Barr, I.G., McCaw, J.M., Bloom, J.D., Hurt, A.C., 2014. Estimating the fitness advantage conferred by permissive neuraminidase mutations in recent oseltamivir-resistant A(H1N1)pdm09 influenza viruses. PLoS pathogens 10, e1004065.
Chen, Z., Kadowaki, S., Hagiwara, Y., Yoshikawa, T., Matsuo, K., Kurata, T., Tamura, S., 2000. Cross-protection against a lethal influenza virus infection by DNA vaccine to neuraminidase. Vaccine 18, 3214-3222.
Chen, Z., Kim, L., Subbarao, K., Jin, H., 2012. The 2009 pandemic H1N1 virus induces anti-neuraminidase (NA) antibodies that cross-react with the NA of H5N1 viruses in ferrets. Vaccine 30, 2516-2522.
Chen, Z., Matsuo, K., Asanuma, H., Takahashi, H., Iwasaki, T., Suzuki, Y., Aizawa, C., Kurata, T., Tamura, S., 1999. Enhanced protection against a lethal influenza virus challenge by immunization with both hemagglutinin- and neuraminidase-expressing DNAs. Vaccine 17, 653-659.
Colman, P.M., Varghese, J.N., Laver, W.G., 1983. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303, 41-44.
Couch, R.B., Kasel, J.A., Gerin, J.L., Schulman, J.L., Kilbourne, E.D., 1974. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J Infect Dis 129, 411-420.
Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Chen, J., Jie, Z., Qiu, H., Xu, K., Xu, X., Lu, H., Zhu, W., Gao, Z., Xiang, N., Shen, Y., He, Z., Gu, Y., Zhang, Z., Yang, Y., Zhao, X., Zhou, L., Li, X., Zou, S., Zhang, Y., Li, X., Yang, L., Guo, J., Dong, J., Li, Q., Dong, L., Zhu, Y., Bai, T., Wang, S., Hao, P., Yang, W., Zhang, Y., Han, J., Yu, H., Li, D., Gao, G.F., Wu, G., Wang, Y., Yuan, Z., Shu, Y., 2013. Human infection with a novel avian-origin influenza A (H7N9) virus. The New England journal of medicine 368, 1888-1897.
Grienke, U., Schmidtke, M., von Grafenstein, S., Kirchmair, J., Liedl, K.R., Rollinger, J.M., 2012. Influenza neuraminidase: a druggable target for natural products. Natural product reports 29, 11-36.
Gubareva, L.V., 2004. Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus research 103, 199-203.
Ilyushina, N.A., Bovin, N.V., Webster, R.G., 2012. Decreased neuraminidase activity is important for the adaptation of H5N1 influenza virus to human airway epithelium. J Virol 86, 4724-4733.
Johansson, B.E., Brett, I.C., 2008. Recombinant influenza B virus HA and NA antigens administered in equivalent amounts are immunogenically equivalent and induce equivalent homotypic and broader heterovariant protection in mice than conventional and live influenza vaccines. Human vaccines 4, 420-424.
Johansson, B.E., Cox, M.M., 2011. Influenza viral neuraminidase: the forgotten antigen. Expert review of vaccines 10, 1683-1695.
Kilbourne, E.D., 2006. Influenza pandemics of the 20th century. Emerging infectious diseases 12, 9-14.
Kilbourne, E.D., Couch, R.B., Kasel, J.A., Keitel, W.A., Cate, T.R., Quarles, J.H., Grajower, B., Pokorny, B.A., Johansson, B.E., 1995. Purified influenza A virus N2 neuraminidase vaccine is immunogenic and non-toxic in humans. Vaccine 13, 1799-1803.
Kilbourne, E.D., Pokorny, B.A., Johansson, B., Brett, I., Milev, Y., Matthews, J.T., 2004. Protection of mice with recombinant influenza virus neuraminidase. The Journal of infectious diseases 189, 459-461.
Lambre, C.R., Terzidis, H., Greffard, A., Webster, R.G., 1990. Measurement of anti-influenza neuraminidase antibody using a peroxidase-linked lectin and microtitre plates coated with natural substrates. J Immunol Methods 135, 49-57.
Lin, S.C., Huang, M.H., Tsou, P.C., Huang, L.M., Chong, P., Wu, S.C., 2011. Recombinant trimeric HA protein immunogenicity of H5N1 avian influenza viruses and their combined use with inactivated or adenovirus vaccines. PloS one 6, e20052.
Liu, Q., Liu, K., Xue, C., Zhou, J., Li, X., Luo, D., Zheng, J., Xu, S., Liu, G.D., Cao, Y., 2014. Recombinant influenza H1, H5 and H9 hemagglutinins containing replaced H3 hemagglutinin transmembrane domain showed enhanced heterosubtypic protection in mice. Vaccine 32, 3041-3049.
Lu, X., Liu, F., Zeng, H., Sheu, T., Achenbach, J.E., Veguilla, V., Gubareva, L.V., Garten, R., Smith, C., Yang, H., Stevens, J., Xu, X., Katz, J.M., Tumpey, T.M., 2014. Evaluation of the antigenic relatedness and cross-protective immunity of the neuraminidase between human influenza A (H1N1) virus and highly pathogenic avian influenza A (H5N1) virus. Virology 454-455, 169-175.
Martinet, W., Saelens, X., Deroo, T., Neirynck, S., Contreras, R., Min Jou, W., Fiers, W., 1997. Protection of mice against a lethal influenza challenge by immunization with yeast-derived recombinant influenza neuraminidase. Eur J Biochem 247, 332-338.
Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., Klenk, H.D., 2004. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. Journal of virology 78, 12665-12667.
Medina, R.A., Garcia-Sastre, A., 2011. Influenza A viruses: new research developments. Nature reviews. Microbiology 9, 590-603.
Muramoto, Y., Noda, T., Kawakami, E., Akkina, R., Kawaoka, Y., 2013. Identification of novel influenza A virus proteins translated from PA mRNA. Journal of virology 87, 2455-2462.
Murphy, B.R., Kasel, J.A., Chanock, R.M., 1972. Association of serum anti-neuraminidase antibody with resistance to influenza in man. The New England journal of medicine 286, 1329-1332.
Neumann, G., Noda, T., Kawaoka, Y., 2009. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459, 931-939.
Ozawa, M., Kawaoka, Y., 2011. Taming influenza viruses. Virus research 162, 8-11.
Palese, P., Tobita, K., Ueda, M., Compans, R.W., 1974. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61, 397-410.
Pappas, C., Aguilar, P.V., Basler, C.F., Solorzano, A., Zeng, H., Perrone, L.A., Palese, P., Garcia-Sastre, A., Katz, J.M., Tumpey, T.M., 2008. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proceedings of the National Academy of Sciences of the United States of America 105, 3064-3069.
Raj, R.S., Bonney, E.A., Phillippe, M., 2014. Influenza, Immune System, and Pregnancy. Reproductive sciences (Thousand Oaks, Calif.).
Rockman, S., Brown, L.E., Barr, I.G., Gilbertson, B., Lowther, S., Kachurin, A., Kachurina, O., Klippel, J., Bodle, J., Pearse, M., Middleton, D., 2013. Neuraminidase-inhibiting antibody is a correlate of cross-protection against lethal H5N1 influenza virus in ferrets immunized with seasonal influenza vaccine. Journal of virology 87, 3053-3061.
Russell, R.J., Haire, L.F., Stevens, D.J., Collins, P.J., Lin, Y.P., Blackburn, G.M., Hay, A.J., Gamblin, S.J., Skehel, J.J., 2006. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45-49.
Schneemann, A., Speir, J.A., Tan, G.S., Khayat, R., Ekiert, D.C., Matsuoka, Y., Wilson, I.A., 2012. A virus-like particle that elicits cross-reactive antibodies to the conserved stem of influenza virus hemagglutinin. Journal of virology 86, 11686-11697.
Smith, A.J., Davies, J.R., 1976. Natural infection with influenza A (H3N2). The development, persistance and effect of antibodies to the surface antigens. The Journal of hygiene 77, 271-282.
Sylte, M.J., Hubby, B., Suarez, D.L., 2007. Influenza neuraminidase antibodies provide partial protection for chickens against high pathogenic avian influenza infection. Vaccine 25, 3763-3772.
Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D.A., Chen, L.M., Recuenco, S., Ellison, J.A., Davis, C.T., York, I.A., Turmelle, A.S., Moran, D., Rogers, S., Shi, M., Tao, Y., Weil, M.R., Tang, K., Rowe, L.A., Sammons, S., Xu, X., Frace, M., Lindblade, K.A., Cox, N.J., Anderson, L.J., Rupprecht, C.E., Donis, R.O., 2012. A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences of the United States of America 109, 4269-4274.

von Itzstein, M., Wu, W.Y., Kok, G.B., Pegg, M.S., Dyason, J.C., Jin, B., Van Phan, T., Smythe, M.L., White, H.F., Oliver, S.W., et al., 1993. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363, 418-423.
Wan, H., Gao, J., Xu, K., Chen, H., Couzens, L.K., Rivers, K.H., Easterbrook, J.D., Yang, K., Zhong, L., Rajabi, M., Ye, J., Sultana, I., Wan, X.F., Liu, X., Perez, D.R., Taubenberger, J.K., Eichelberger, M.C., 2013. Molecular basis for broad neuraminidase immunity: conserved epitopes in seasonal and pandemic H1N1 as well as H5N1 influenza viruses. Journal of virology 87, 9290-9300.
Wu, Y., Wu, Y., Tefsen, B., Shi, Y., Gao, G.F., 2014. Bat-derived influenza-like viruses H17N10 and H18N11. Trends in microbiology 22, 183-191.
Xu, X., Zhu, X., Dwek, R.A., Stevens, J., Wilson, I.A., 2008. Structural characterization of the 1918 influenza virus H1N1 neuraminidase. Journal of virology 82, 10493-10501.
Zhang, H., Hale, B.G., Xu, K., Sun, B., 2013. Viral and host factors required for avian H5N1 influenza A virus replication in mammalian cells. Viruses 5, 1431-1446.

(此全文未開放授權)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 二氫葉酸還原脢之核酸干擾與未摺疊性蛋白反應對CHO與NS0細胞表現重組蛋白之研究
2. 利用哺乳動物細胞表現嚴重急性呼吸道症候群冠狀病毒之棘蛋白片段
3. 利用體外親和力成熟化及噬菌體表現系統選殖日本腦炎病毒高親和力抗體珠
4. 含醣胺素結合區及RGD序列之人工細胞外間質蛋白
5. 比較SV40驅動和IRES驅動二氫葉酸還原酶的載體在CHO細胞工程中基因放大的差異性
6. 日本腦炎病毒prM與E蛋白N-醣化作用之研究
7. 利用桿狀病毒表現流感病毒血球凝集素與似病毒顆粒之研究
8. 構築與表現人類流感與禽流感之嵌合性似病毒顆粒
9. Dihydrofolate Reductase-Mir-30 RNA based Interference for chimeric antibody expression in CHO cells
10. Interactions of Influenza Hemagglutinin Proteins with Mouse Bone Marrow-Derived Dendritic Cells
11. 感染性選殖株衍生之登革第四型疫苗病毒於MRC-5細胞產生適應性突變點Glu345Lys之研究
12. Producing Recombinant Hemagglutinin Protein of H5N1 Avian Influenza Viruses in Chinese Hamster Overy (CHO) Cells Using Dihydrofolate Reductase and Dihydrofolate Reductase-RNA Interference
13. 利用DNA/重組腺病毒載體與H5N1血球凝集素蛋白進行heterologous prime-boost免疫法並探討其免疫反應增強的現象
14. 表達呼吸道融合病毒融合蛋白及其特性分析
15. 以DNA-prime和似病毒顆粒-booster方法來研發免疫聚焦性H5HA流感疫苗
 
* *