帳號:guest(3.22.71.109)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈倫達
作者(外文):Shen, Lunda
論文名稱(中文):綠膿桿菌PAO1轉錄因子FliA於細菌群泳調控路徑中之作用
論文名稱(外文):Effects of FliA on Regulation of Swarming Motility of Pseudomonas aeruginosa PAO1
指導教授(中文):張晃猷
指導教授(外文):Chang, Hwan-You
口試委員(中文):張壯榮
陳昭瑩
口試委員(外文):Chang, Chuang-Rung
Chen, Chao-Ying
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:101080467
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:117
中文關鍵詞:綠膿桿菌轉錄因子FliA群泳鞭毛環狀雙鳥嘌呤單磷酸磷酸二酯酶
外文關鍵詞:Pseudomonas aeruginosaFliAswarmingflagellumc-di-GMPphosphodiesterase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:136
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
綠膿桿菌PAO1的含組氨酸磷酸轉移蛋白B(HptB)能透過PA3346、PA3347、FlgM所組成的夥伴交換系統調控群體泳動。hptB突變株失去群泳能力,但仍可觀察到鞭毛存在。此群泳能力的喪失可以經由過量表達具降解環狀雙鳥嘌呤單磷酸(c-di-GMP)能力之磷酸二酯酶PA2133或PA4367得到一定程度的恢復。本研究致力於探討FliA在HptB調控細菌群泳的路徑中扮演的角色。本研究首先構築fliA剔除株,並於該突變株分別過量表達fliA、PA2133、PA4367。結果顯示,當細菌之fliA被剔除後,細菌失去群泳能力,但在PA2133或PA4367過量表達的情況下可以得到一定程度的恢復,與hptB突變株的情況相似。當fliA基因過量表達時,也會降低游泳及群泳能力。以穿透式電子顯微鏡觀察細菌形態,發現fliA剔除株無鞭毛,而過量表達fliA基因之菌株其鞭毛較野生株之鞭毛明顯變短。轉錄體分析結果顯示,參與鞭毛結構合成及與磷酸二酯酶相關之部分基因表現在fliA基因剔除株較野生株高,但在過量表達fliA之菌株則為下降。以β-葡萄糖苷酸酶報導基因系統確認磷酸二酯酶基因PA4367及PA5017的啟動子活性,結果顯示fliA剔除會導致PA4367啟動子之活性顯著上升,而PA5017啟動子之活性則無明顯變化。透過綠色螢光蛋白報告系統檢測細菌體內c-di-GMP濃度,發現c-di-GMP會在fliA剔除時上升,與轉錄體分析之結果相符。本研究證實了參與在HptB調控細菌群泳路徑中之FliA,其透過調控鞭毛合成以及調節c-di-GMP濃度進而影響細菌群泳之能力,其中PA4367可能為參與在此調控路徑之磷酸二酯酶。於本研究中發現FliA亦影響毒性相關生物特性。我們的研究結果增進了對綠膿桿菌群泳能力調節路徑的瞭解,為未來對轉錄因子FliA的研究提供了新方向。
The histidine-containing phosphotransfer protein-B (HptB, PA3345) regulates swarming motility in Pseudomonas aeruginosa PAO1 through a partner-switching mechanism involving PA3346 (Ser/Thr protein kinase/phosphatase), PA3347 (anti-σ28 factor antagonist), and anti-σ28 factor FlgM. The ΔhptB mutant is defective in swarming, although its flagellum remains intact. Overexpression of PA2133 and PA4367, both encode a c-di-GMP phosphodiesterase (PDE), could rescue the swarming defect of the ΔhptB. To investigate whether σ28 (FliA) regulates P. aeruginosa motility through modulating c-di-GMP level, this study generated a fliA-deletion mutant and a fliA overexpressing stain. The deletion of fliA resulted in a decreased swarming motility which could be partially restored by overexpressing either PA2133 or PA4367. Surprisingly, overexpressing fliA also led to defective swimming and swarming, suggesting that an optimal concentration of FliA is essential for the bacterium to achieve the highest motility. Using transmission electron microscope to examine the bacterial morphology has revealed that ΔfliA had no flagella, and the flagella of the fliA overexpressing strain were significantly shorter than that of wild-type. Transcriptome profiling of PAO1 and ΔfliA showed that the expression levels of several flagella biogenesis and PDE genes decreased in the ΔfliA strain. Further analysis the promoter activity of the PDE genes using the GUS reporter assay confirmed that the activity of PA4367 promoter was indeed decreased in ΔfliA. Finally, this study demonstrated that the intracellular concentration of c-di-GMP was increased in the ΔfliA strain as determined using a GFP-based c-di-GMP reporter system. These findings suggest that FliA participates in HptB-mediated swarming regulation through both affecting flagella biogenesis and modulating c-di-GMP levels. Altogether our findings contribute to a better understanding of how the HptB partner switching system cooperates with FliA to regulate bacterial motility, an important pathogenesis feature of P. Aeruginosa.
中文摘要 I
Abstract II
誌謝 III
Abbreviations IV
Table of Contents VI
List of Figures X
List of Tables XI
1 Introduction 1
1.1 Pseudomonas aeruginosa 2
1.2 Flagella-mediated motility of P. aeruginosa 3
1.3 Two-component system and HptB participate in regulation on swarming motility of P. aeruginosa 3
1.4 FliA, sigma factor 28 (σ28) 5
1.1 C-di-GMP in regulation of motility 6
1.5 Objective of the study 8
2 Materials and Methods 9
2.1 Bacterial strains and plasmids 10
2.2 Bactrial storage and growth conditions 10
2.3 Bioinformatics analysis 11
2.4 Genomic DNA Isolation 11
2.5 Plasmid DNA isolation 13
2.6 Amplification of DNA fragments 14
2.7 Restriction enzyme digestion 14
2.8 Purification of DNA 15
2.9 Ligation of DNA fragments 16
2.10 Preparation of total RNA 16
2.11 Agarose gel electrophoresis 17
2.12 Quantification of DNA and RNA 18
2.13 Preparation of competent cells 18
2.14 Transformation 19
2.15 Conjugation 20
2.16 Construction of P. aeruginosa PAO1 fliA deletion mutant 21
2.17 RNA-seq analysis 22
2.18 Gene reporter assay 22
2.19 Flagella observation by transmission electron microscopy (TEM) 24
2.20 Growth rate 25
2.21 Swarming motility assay 25
2.22 Swimming motility assay 26
2.23 Biofilm formation assay 26
2.24 Caseinase activity assay 27
2.25 Hemolysis assay 28
2.26 Quantification of phenazine pigment production 28
2.27 C-di-GMP reporter assay 29
2.28 Inter-bacterial competition assay 30
2.29 Quorum sensing (QS) signal N-Acyl homoserine lactones (AHL) assay 31
3 Results 32
3.1 The growth rates of P. aeruginosa PAO1 [pMMB66EH], ΔfliA [pMMB66EH], ΔfliA [pMMBfliA], and PAO1 [pMMBfliA] 33
3.2 FliA regulates swimming and swarming motility 33
3.3 FliA regulates biofilm formation 34
3.4 FliA controls the biogenesis of flagella 35
3.5 FliA affects intracellular concentration of c-di-GMP 36
3.6 PA4367 participates in the FliA-mediated regulation of c-di-GMP and swarming motility 37
3.7 FliA regulates phenazine pigment production, hemolysis activity, caseinase activity, quorom sensing, inter-bacterial competition activity, type six secretion system (T6SS), amino acid transport and metabolism, energy production and conversion, and inorganic ion transport and metabolism 38
4 Discussion 44
References 52
1. Zamorano L, Moyà B, Juan C, Mulet X, Blázquez J, Oliver A: The Pseudomonas aeruginosa CreBC Two-Component System Plays a Major Role in the Response to β-lactams, Fitness, Biofilm Growth and Global Regulation. Antimicrobial agents and chemotherapy 2014:AAC. 02556-02514.
2. Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E: Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infection and immunity 2003, 71(5):2404-2413.
3. Apidianakis Y, Rahme LG: Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nature protocols 2009, 4(9):1285-1294.
4. Mishra P, Jerobin J, Thomas J, Mukherjee A, Chandrasekaran N: Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita. Biotechnology and applied biochemistry 2014.
5. Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM: Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant physiology 2004, 134(1):320-331.
6. Rahme LG, Tan M-W, Le L, Wong SM, Tompkins RG, Calderwood SB, Ausubel FM: Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proceedings of the National Academy of Sciences 1997, 94(24):13245-13250.
7. Mayer-Hamblett N, Rosenfeld M, Gibson RL, Ramsey BW, Kulasekara HD, Retsch-Bogart GZ, Morgan W, Wolter DJ, Pope CE, Houston LS: Pseudomonas aeruginosa in vitro Phenotypes Distinguish Cystic Fibrosis Infection Stages and Outcomes. American journal of respiratory and critical care medicine 2014(ja).
8. Takajo D, Iwaya K, Katsurada Y, Miyai K, Takasu A, Matsubara O, Sakamoto T, Tamai S, Tsuda H: Community‐acquired lobar pneumonia caused by Pseudomonas aeruginosa infection in Japan: A case report with histological and immunohistochemical examination. Pathology International 2014, 64(5):224-230.
9. Harjai K, Gupta RK, Sehgal H: Attenuation of quorum sensing controlled virulence of Pseudomonas aeruginosa by cranberry. The Indian journal of medical research 2014, 139(3):446.
10. Martis N, Leroy S, Blanc V: Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: A narrative review for the clinician. Journal of Infection 2014.
11. Thibodeaux BA, Caballero AR, Dajcs JJ, Marquart ME, Engel LS, O'Callaghan RJ: Pseudomonas aeruginosa protease IV: a corneal virulence factor of low immunogenicity. Ocular immunology and inflammation 2005, 13(2-3):169-182.
12. Brodinova N, Moroz A, Luchina T: Characteristics, isolation and role in the infectious process of Pseudomonas aeruginosa protease. Journal of hygiene, epidemiology, microbiology, and immunology 1982, 27(1):69-76.
13. Falciani C, Lozzi L, Scali S, Brunetti J, Bracci L, Pini A: Site-specific pegylation of an antimicrobial peptide increases resistance to Pseudomonas aeruginosa elastase. Amino acids 2014, 46(5):1403-1407.
14. Johnson QR, Nellas RB, Shen T: Solvent-dependent gating motions of an extremophilic lipase from Pseudomonas aeruginosa. Biochemistry 2012, 51(31):6238-6245.
15. Haley CL, Kruczek C, Qaisar U, Colmer-Hamood JA, Hamood AN: Mucin inhibits Pseudomonas aeruginosa biofilm formation by significantly enhancing twitching motility. Canadian journal of microbiology 2014, 60(3):155-166.
16. O'Toole GA, Kolter R: Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular microbiology 1998, 30(2):295-304.
17. Bucior I, Pielage JF, Engel JN: Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS pathogens 2012, 8(4):e1002616.
18. Köhler T, Curty LK, Barja F, van Delden C, Pechère J-C: Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. Journal of bacteriology 2000, 182(21):5990-5996.
19. Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A: Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infection and immunity 1998, 66(1):43-51.
20. Duan Q, Zhou M, Zhu L, Zhu G: Flagella and bacterial pathogenicity. Journal of basic microbiology 2013, 53(1):1-8.
21. Wang Q, Suzuki A, Mariconda S, Porwollik S, Harshey RM: Sensing wetness: a new role for the bacterial flagellum. The EMBO journal 2005, 24(11):2034-2042.
22. Silverman M, Simon M: Flagellar rotation and the mechanism of bacterial motility. Nature 1974, 249:73-74.
23. Qian C, Wong CC, Swarup S, Chiam K-H: Bacterial tethering analysis reveals a “run-reverse-turn” mechanism for Pseudomonas species motility. Applied and environmental microbiology 2013, 79(15):4734-4743.
24. Xu T, Su Y, Xu Y, He Y, Wang B, Dong X, Li Y, Zhang XH: Mutations of flagellar genes fliC12, fliA and flhDC of Edwardsiella tarda attenuated bacterial motility, biofilm formation and virulence to fish. Journal of applied microbiology 2014, 116(2):236-244.
25. Calvio C, Celandroni F, Ghelardi E, Amati G, Salvetti S, Ceciliani F, Galizzi A, Senesi S: Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. Journal of bacteriology 2005, 187(15):5356-5366.
26. Zhang S, McCormack FX, Levesque RC, O'Toole GA, Lau GW: The flagellum of Pseudomonas aeruginosa is required for resistance to clearance by surfactant protein A. PloS one 2007, 2(6):e564.
27. Qin Y, Lin G, Chen W, Huang B, Huang W, Yan Q: Flagellar motility contributes to the invasion and survival of Aeromonas hydrophila in Anguilla japonica macrophages. Fish & shellfish immunology 2014, 39(2):273-279.
28. Mulet X, Cabot G, Ocampo-Sosa AA, Domínguez MA, Zamorano L, Juan C, Tubau F, Rodríguez C, Moyà B, Peña C: Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrobial agents and chemotherapy 2013, 57(11):5527-5535.
29. Rashid MH, Kornberg A: Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 2000, 97(9):4885-4890.
30. Li Y, Xia H, Bai F, Xu H, Yang L, Yao H, Zhang L, Zhang X, Bai Y, Saris PE: Identification of a new gene PA5017 involved in flagella‐mediated motility, chemotaxis and biofilm formation in Pseudomonas aeruginosa. FEMS microbiology letters 2007, 272(2):188-195.
31. Bernier SP, Ha D-G, Khan W, Merritt JH, O’Toole GA: Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Research in microbiology 2011, 162(7):680-688.
32. Partridge JD, Harshey RM: Swarming: flexible roaming plans. Journal of bacteriology 2013, 195(5):909-918.
33. Kaiser D: Bacterial swarming: a re-examination of cell-movement patterns. Current Biology 2007, 17(14):R561-R570.
34. Patrick JE, Kearns DB: Swarming motility and the control of master regulators of flagellar biosynthesis. Molecular microbiology 2012, 83(1):14-23.
35. Copeland MF, Weibel DB: Bacterial swarming: a model system for studying dynamic self-assembly. Soft Matter 2009, 5(6):1174-1187.
36. Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O'Toole GA: BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. Journal of bacteriology 2007, 189(22):8165-8178.
37. Bhuwan M, Lee H-J, Peng H-L, Chang H-Y: Histidine-containing phosphotransfer protein-B (HptB) regulates swarming motility through partner-switching system in Pseudomonas aeruginosa PAO1 strain. Journal of Biological Chemistry 2012, 287(3):1903-1914.
38. Lin C-T, Huang Y-J, Chu P-H, Hsu J-L, Huang C-H, Peng H-L: Identification of an HptB-mediated multi-step phosphorelay in Pseudomonas aeruginosa PAO1. Research in microbiology 2006, 157(2):169-175.
39. Yang S-J, Xiong YQ, Yeaman MR, Bayles KW, Abdelhady W, Bayer AS: Role of the LytSR Two-Component Regulatory System in Adaptation to Cationic Antimicrobial Peptides in Staphylococcus aureus. Antimicrobial agents and chemotherapy 2013, 57(8):3875-3882.
40. Rifat D, Karakousis PC: Differential regulation of the two-component regulatory system senX3-regX3 in Mycobacterium tuberculosis. Microbiology 2014, 160(Pt 6):1125-1133.
41. Gao R, Stock AM: Evolutionary tuning of protein expression levels of a positively autoregulated two-component system. PLoS genetics 2013, 9(10):e1003927.
42. Banse AV, Hobbs EC, Losick R: Phosphorylation of Spo0A by the histidine kinase KinD requires the lipoprotein Med in Bacillus subtilis. Journal of bacteriology 2011, 193(15):3949-3955.
43. Li J, Swanson RV, Simon MI, Weis RM: Response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry 1995, 34(45):14626-14636.
44. Rodrigue A, Quentin Y, Lazdunski A, Méjean V, Foglino M: Cell signalling by oligosaccharides. Two-component systems in Pseudomonas aeruginosa: why so many? Trends in microbiology 2000, 8(11):498-504.
45. Gellatly SL, Needham B, Madera L, Trent MS, Hancock RE: The Pseudomonas aeruginosa PhoP-PhoQ two-component regulatory system is induced upon interaction with epithelial cells and controls cytotoxicity and inflammation. Infection and immunity 2012, 80(9):3122-3131.
46. Miller AK, Brannon MK, Stevens L, Johansen HK, Selgrade SE, Miller SI, Høiby N, Moskowitz SM: PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrobial agents and chemotherapy 2011, 55(12):5761-5769.
47. Ly NS, Yang J, Bulitta JB, Tsuji BT: Impact of two-component regulatory systems PhoP-PhoQ and PmrA-PmrB on colistin pharmacodynamics in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy 2012, 56(6):3453-3456.
48. Cadoret F, Ball G, Douzi B, Voulhoux R: Txc, a New Type II Secretion System of Pseudomonas aeruginosa Strain PA7, Is Regulated by the TtsS/TtsR Two-Component System and Directs Specific Secretion of the CbpE Chitin-Binding Protein. Journal of bacteriology 2014, 196(13):2376-2386.
49. Gillen KL, Hughes KT: Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. Journal of bacteriology 1991, 173(20):6453-6459.
50. Starnbach M, Lory S: The filA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis. Molecular microbiology 1992, 6(4):459-469.
51. Ohnishi K, Kutsukake K, Suzuki H, Iino T: Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Molecular and General Genetics MGG 1990, 221(2):139-147.
52. Chen Y-F, Helmann JD: Restoration of motility to an Escherichia coli fliA flagellar mutant by a Bacillus subtilis sigma factor. Proceedings of the National Academy of Sciences 1992, 89(11):5123-5127.
53. Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJ, Yildiz F, Klose KE: The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. Journal of bacteriology 2009, 191(21):6555-6570.
54. Rodríguez‐Herva JJ, Duque E, Molina‐Henares MA, Navarro‐Avilés G, Van Dillewijn P, De La Torre J, Molina‐Henares AJ, La Campa ASd, Ran F, Segura A: Physiological and transcriptomic characterization of a fliA mutant of Pseudomonas putida KT2440. Environmental microbiology reports 2010, 2(3):373-380.
55. Boll JM, Hendrixson DR: A regulatory checkpoint during flagellar biogenesis in Campylobacter jejuni initiates signal transduction to activate transcription of flagellar genes. MBio 2013, 4(5):e00432-00413.
56. Kapatral V, Olson JW, Pepe JC, Miller VL, Minnich SA: Temperature‐dependent regulation of Yersinia enterocolitica Class III flagellar genes. Molecular microbiology 1996, 19(5):1061-1071.
57. Ohnishi K, Kutsukake K, Suzuki H, Lino T: A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an anti‐sigma factor inhibits the activity of the flagellum‐specific Sigma factor, σF. Molecular microbiology 1992, 6(21):3149-3157.
58. Gillen KL, Hughes KT: Transcription from two promoters and autoregulation contribute to the control of expression of the Salmonella typhimurium flagellar regulatory gene flgM. Journal of bacteriology 1993, 175(21):7006-7015.
59. Frisk A, Jyot J, Arora S, Ramphal R: Identification and functional characterization of flgM, a gene encoding the anti-sigma 28 factor in Pseudomonas aeruginosa. Journal of bacteriology 2002, 184(6):1514-1521.
60. Claret L, Miquel S, Vieille N, Ryjenkov DA, Gomelsky M, Darfeuille-Michaud A: The flagellar sigma factor FliA regulates adhesion and invasion of Crohn disease-associated Escherichia coli via a cyclic dimeric GMP-dependent pathway. Journal of Biological Chemistry 2007, 282(46):33275-33283.
61. Ryjenkov DA, Simm R, Römling U, Gomelsky M: The PilZ Domain Is a Receptor for the Second Messenger c-di-GMP THE PilZ DOMAIN PROTEIN YcgR CONTROLS MOTILITY IN ENTEROBACTERIA. Journal of Biological Chemistry 2006, 281(41):30310-30314.
62. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM: The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Molecular cell 2010, 38(1):128-139.
63. Hou Y, Li D-F, Wang D-C: Crystallization and preliminary X-ray analysis of the flagellar motorbrake'molecule YcgR with c-di-GMP from Escherichia coli. Acta Crystallographica Section F: Structural Biology and Crystallization Communications 2013, 69(6):663-665.
64. Fang X, Gomelsky M: A post‐translational, c‐di‐GMP‐dependent mechanism regulating flagellar motility. Molecular microbiology 2010, 76(5):1295-1305.
65. Chen Y-W, Teng C-H, Ho Y-H, Ho TYJ, Huang W-C, Hashimoto M, Chiang I-Y, Chen C-S: Identification of bacterial factors involved in type 1 fimbria expression using an Escherichia coli K12 proteome chip. Molecular & Cellular Proteomics 2014, 13(6):1485-1494.
66. Römling U, Gomelsky M, Galperin MY: C‐di‐GMP: the dawning of a novel bacterial signalling system. Molecular microbiology 2005, 57(3):629-639.
67. Mills E, Pultz IS, Kulasekara HD, Miller SI: The bacterial second messenger c‐di‐GMP: mechanisms of signalling. Cellular microbiology 2011, 13(8):1122-1129.
68. Na L, Yang Z: [Activity of cyclic diguanylate (c-di-GMP) in bacteria and the study of its derivatives]. Yao xue xue bao= Acta pharmaceutica Sinica 2012, 47(3):307-312.
69. Tamayo R, Pratt JT, Camilli A: Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annual review of microbiology 2007, 61:131.
70. D'Argenio DA, Miller SI: Cyclic di-GMP as a bacterial second messenger. Microbiology 2004, 150(8):2497-2502.
71. Jenal U: Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Current opinion in microbiology 2004, 7(2):185-191.
72. Jenal U, Malone J: Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 2006, 40:385-407.
73. Römling U, Amikam D: Cyclic di-GMP as a second messenger. Current opinion in microbiology 2006, 9(2):218-228.
74. Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, Mayer R, Ross P, Amikam D, Weinhouse H: Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. Journal of bacteriology 1998, 180(17):4416-4425.
75. Chan C, Paul R, Samoray D, Amiot NC, Giese B, Jenal U, Schirmer T: Structural basis of activity and allosteric control of diguanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(49):17084-17089.
76. Schirmer T, Jenal U: Structural and mechanistic determinants of c-di-GMP signalling. Nature Reviews Microbiology 2009, 7(10):724-735.
77. Sultan SZ, Pitzer JE, Boquoi T, Hobbs G, Miller MR, Motaleb MA: Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Infection and immunity 2011, 79(8):3273-3283.
78. Schmidt AJ, Ryjenkov DA, Gomelsky M: The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. Journal of bacteriology 2005, 187(14):4774-4781.
79. Lovering AL, Capeness MJ, Lambert C, Hobley L, Sockett RE: The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases. MBio 2011, 2(5):e00163-00111.
80. Barends TR, Hartmann E, Griese JJ, Beitlich T, Kirienko NV, Ryjenkov DA, Reinstein J, Shoeman RL, Gomelsky M, Schlichting I: Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature 2009, 459(7249):1015-1018.
81. Simm R, Morr M, Kader A, Nimtz M, Römling U: GGDEF and EAL domains inversely regulate cyclic di‐GMP levels and transition from sessility to motility. Molecular microbiology 2004, 53(4):1123-1134.
82. Christen M, Christen B, Allan MG, Folcher M, Jenö P, Grzesiek S, Jenal U: DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proceedings of the National Academy of Sciences 2007, 104(10):4112-4117.
83. Martínez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Rivilla R, Martín M: The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in Pseudomonas fluorescens. PloS one 2012, 7(2):e31765.
84. Wolfe AJ, Visick KL: Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility. Journal of bacteriology 2008, 190(2):463-475.
85. Armitage JP, Berry RM: Time for bacteria to slow down. Cell 2010, 141(1):24-26.
86. Magariyama Y, Yamaguchi S, Aizawa S-L: Genetic and behavioral analysis of flagellar switch mutants of Salmonella typhimurium. Journal of bacteriology 1990, 172(8):4359-4369.
87. Zorraquino V, García B, Latasa C, Echeverz M, Toledo-Arana A, Valle J, Lasa I, Solano C: Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. Journal of bacteriology 2013, 195(3):417-428.
88. Pultz IS, Christen M, Kulasekara HD, Kennard A, Kulasekara B, Miller SI: The response threshold of Salmonella PilZ domain proteins is determined by their binding affinities for c‐di‐GMP. Molecular microbiology 2012, 86(6):1424-1440.
89. Russell MH, Bible AN, Fang X, Gooding JR, Campagna SR, Gomelsky M, Alexandre G: Integration of the Second Messenger c-di-GMP into the Chemotactic Signaling Pathway. MBio 2013, 4(2):e00001-00013.
90. Bartlett JM, Stirling D: A short history of the polymerase chain reaction. In: PCR protocols. Springer; 2003: 3-6.
91. Arber W, Linn S: DNA modification and restriction. Annual review of biochemistry 1969, 38(1):467-500.
92. Roberts RJ: Restriction endonucleases. CRC critical reviews in biochemistry 1976, 4(2):123-164.
93. Tataurov AV, You Y, Owczarzy R: Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophysical chemistry 2008, 133(1):66-70.
94. Jefferson RA, Burgess SM, Hirsh D: beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proceedings of the National Academy of Sciences 1986, 83(22):8447-8451.
95. Gu H, Hou S, Yongyat C, De Tore S, Ren D: Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir 2013, 29(35):11145-11153.
96. Izano EA, Amarante MA, Kher WB, Kaplan JB: Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Applied and environmental microbiology 2008, 74(2):470-476.
97. Hall-Stoodley L, Costerton JW, Stoodley P: Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology 2004, 2(2):95-108.
98. O'Toole GA, Kolter R: Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular microbiology 1998, 28(3):449-461.
99. Abu EA, Su S, Sallans L, Boissy RE, Greatens A, Heineman WR, Hassett DJ: Cyclic voltammetric, fluorescence and biological analysis of purified aeruginosin A, a secreted red pigment of Pseudomonas aeruginosa PAO1. Microbiology 2013, 159(Pt 8):1736-1747.
100. Li Y-C, Zhu J-R: Role of N-acyl homoserine lactone (AHL)-based quorum sensing (QS) in aerobic sludge granulation. Applied microbiology and biotechnology 2014:1-10.
101. Karunker I, Rotem O, Dori-Bachash M, Jurkevitch E, Sorek R: A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PloS one 2013, 8(4):e61850.
102. Guttenplan SB, Kearns DB: Regulation of flagellar motility during biofilm formation. FEMS microbiology reviews 2013, 37(6):849-871.
103. Henrichsen J: Bacterial surface translocation: a survey and a classification. Bacteriological reviews 1972, 36(4):478.
104. Overhage J, Bains M, Brazas MD, Hancock RE: Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. Journal of bacteriology 2008, 190(8):2671-2679.
105. Bains M, Fernández L, Hancock RE: Phosphate starvation promotes swarming motility and cytotoxicity in Pseudomonas aeruginosa. Applied and environmental microbiology 2012:AEM. 01015-01012.
106. Blus-Kadosh I, Zilka A, Yerushalmi G, Banin E: The Effect of pstS and phoB on Quorum Sensing and Swarming Motility in Pseudomonas aeruginosa. PloS one 2013, 8(9):e74444.
107. Shetye GS, Singh N, Jia C, Nguyen CD, Wang G, Luk YY: Specific Maltose Derivatives Modulate the Swarming Motility of Nonswarming Mutant and Inhibit Bacterial Adhesion and Biofilm Formation by Pseudomonas aeruginosa. ChemBioChem 2014, 15(10):1514-1523.
108. Yildiz FH, Visick KL: Vibrio biofilms: so much the same yet so different. Trends in microbiology 2009, 17(3):109-118.
109. Harmsen M, Yang L, Pamp SJ, Tolker‐Nielsen T: An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology & Medical Microbiology 2010, 59(3):253-268.
110. Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jyot J, Lory S, Ramphal R: A four‐tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Molecular microbiology 2003, 50(3):809-824.
111. Galeva A, Moroz N, Yoon Y-H, Hughes KT, Samatey FA, Kostyukova AS: Bacterial flagellin-specific chaperone FliS interacts with anti-sigma factor FlgM. Journal of bacteriology 2014, 196(6):1215-1221.
112. Luo M, Niu S, Yin Y, Huang A, Wang D: Cloning, purification, crystallization and preliminary X-ray studies of flagellar hook scaffolding protein FlgD from Pseudomonas aeruginosa PAO1. Acta Crystallographica Section F: Structural Biology and Crystallization Communications 2009, 65(8):795-797.
113. Winstanley C, Morgan JAW, Pickup RW, Saunders JR: Molecular cloning of two Pseudomonas flagellin genes and basal body structural genes. Microbiology 1994, 140(8):2019-2031.
114. Rybtke MT, Borlee BR, Murakami K, Irie Y, Hentzer M, Nielsen TE, Givskov M, Parsek MR, Tolker-Nielsen T: Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Applied and environmental microbiology 2012, 78(15):5060-5069.
115. Kulesekara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y: Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proceedings of the National Academy of Sciences of the United States of America 2006, 103(8):2839-2844.
116. Dötsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe M, Geffers R, Häussler S: The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PloS one 2012, 7(2):e31092.
117. Wurtzel O, Yoder-Himes DR, Han K, Dandekar AA, Edelheit S, Greenberg EP, Sorek R, Lory S: The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS pathogens 2012, 8(9):e1002945.
118. Liu E, Ye J, Song S, Wang K, Zhang Y, Zhang H: Impact of co‐deficiency of RpoN and RpoS on stress tolerance, virulence and gene regulation in Edwardsiella tarda. Journal of basic microbiology 2014.
119. Wang K, Liu E, Song S, Wang X, Zhu Y, Ye J, Zhang H: Characterization of Edwardsiella tarda rpoN: roles in σ70 family regulation, growth, stress adaption and virulence toward fish. Archives of microbiology 2012, 194(6):493-504.
120. Schulz T, Rydzewski K, Schunder E, Holland G, Bannert N, Heuner K: FliA expression analysis and influence of the regulatory proteins RpoN, FleQ and FliA on virulence and in vivo fitness in Legionella pneumophila. Archives of microbiology 2012, 194(12):977-989.
121. Molofsky A, Shetron-Rama L, Swanson MS: Components of the Legionella pneumophila flagellar regulon contribute to multiple virulence traits, including lysosome avoidance and macrophage death. Infection and immunity 2005, 73(9):5720-5734.
122. Hassan HM, Fridovich I: Mechanism of the antibiotic action pyocyanine. Journal of bacteriology 1980, 141(1):156-163.
123. Ortiz-Castro R, Pelagio-Flores R, Méndez-Bravo A, Ruiz-Herrera LF, Campos-García J, López-Bucio J: Pyocyanin, a Virulence Factor Produced by Pseudomonas aeruginosa, Alters Root Development Through Reactive Oxygen Species and Ethylene Signaling in Arabidopsis. Molecular Plant-Microbe Interactions 2014, 27(4):364-378.
124. Naik V, Mahajan G: Quorum sensing: a non-conventional target for antibiotic discovery. Natural product communications 2013, 8(10):1455-1458.
125. Ostroff R, Vasil A, Vasil M: Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. Journal of bacteriology 1990, 172(10):5915-5923.
126. Rao SS, Mohan KV, Atreya CD: A peptide derived from phage display library exhibits antibacterial activity against E. coli and Pseudomonas aeruginosa. PloS one 2013, 8(2):e56081.
127. Zhao J, Zhang L, Gu Z, Ding Z, Shi G: [Expression of hemolytic phospholipase C from Pseudomonas aeruginosa in Escherichia coli]. Wei sheng wu xue bao= Acta microbiologica Sinica 2013, 53(3):259-268.
128. Brown M, Foster JS: A simple diagnostic milk medium for Pseudomonas aeruginosa. Journal of clinical pathology 1970, 23(2):172-177.
129. Sharma R, Gupta R: Extracellular expression of keratinase Ker P from Pseudomonas aeruginosa in E. coli. Biotechnology letters 2010, 32(12):1863-1868.
130. Fuqua C, Greenberg EP: Listening in on bacteria: acyl-homoserine lactone signalling. Nature Reviews Molecular Cell Biology 2002, 3(9):685-695.
131. González JE, Keshavan ND: Messing with bacterial quorum sensing. Microbiology and Molecular Biology Reviews 2006, 70(4):859-875.
132. Lui LT, Xue X, Sui C, Brown A, Pritchard DI, Halliday N, Winzer K, Howdle SM, Fernandez-Trillo F, Krasnogor N: Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes. Nature chemistry 2013.
133. Castillo-Juárez I, García-Contreras R, Velázquez-Guadarrama N, Soto-Hernández M, Martínez-Vázquez M: Amphypterygium adstringens Anacardic Acid Mixture Inhibits Quorum Sensing-controlled Virulence Factors of Chromobacterium violaceum and Pseudomonas aeruginosa. Archives of medical research 2013, 44(7):488-494.
134. O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL: A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proceedings of the National Academy of Sciences 2013, 110(44):17981-17986.
135. Morkunas B, Galloway WR, Wright M, Ibbeson BM, Hodgkinson JT, O'Connell KM, Bartolucci N, Della Valle M, Welch M, Spring DR: Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Organic & biomolecular chemistry 2012, 10(42):8452-8464.
136. Jakobsen TH, Bjarnsholt T, Jensen PØ, Givskov M, Høiby N: Targeting quorum sensing in Pseudomonas aeruginosa biofilms: current and emerging inhibitors. Future microbiology 2013, 8(7):901-921.
137. Li Z, Nair SK: Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Science 2012, 21(10):1403-1417.
138. Rabin N, Delago A, Inbal B, Krief P, Meijler MM: Tailor-made LasR agonists modulate quorum sensing in Pseudomonas aeruginosa. Organic & biomolecular chemistry 2013, 11(41):7155-7163.
139. Longo F, Rampioni G, Bondì R, Imperi F, Fimia GM, Visca P, Zennaro E, Leoni L: A New Transcriptional Repressor of the Pseudomonas aeruginosa Quorum Sensing Receptor Gene lasR. PloS one 2013, 8(7):e69554.
140. Li Y, Qu HP, Liu JL, Wan HY: Correlation between group behavior and quorum sensing in Pseudomonas aeruginosa isolated from patients with hospital-acquired pneumonia. Journal of thoracic disease 2014, 6(6):810-817.
141. Nagant C, Seil M, Nachtergael A, Dulanto S, Dehaye J-P: Contribution of the production of quormones to some phenotypic characteristics of Pseudomonas aeruginosa clinical strains. Journal of medical microbiology 2013, 62(Pt 7):951-958.
142. Ruggieri P, Angelini A, Pala E, Mercuri M: Infections in surgery of primary tumors of the sacrum. Spine 2012, 37(5):420-428.
143. Igari J, Machida K: [Current topics in infectious diseases]. Rinsho byori The Japanese journal of clinical pathology 1994, 42(5):439-440.
144. Movahedi Z, Pourakbari B, Mahmoudi S, Sabouni F, Ashtiani HM, SADEGHI RH, Mamishi S: Pseudomonas aeruginosa infection among cystic fibrosis and ICU patients in the referral children medical hospital in Tehran, Iran. Journal of preventive medicine and hygiene 2013, 54(1):24-28.
145. Tashiro Y, Yawata Y, Toyofuku M, Uchiyama H, Nomura N: Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microbes and Environments 2013, 28(1):13-24.
146. Rodríguez-Rojas A, Maciá MD, Couce A, Gómez C, Castañeda-García A, Oliver A, Blázquez J: Assessing the emergence of resistance: the absence of biological cost in vivo may compromise fosfomycin treatments for P. aeruginosa infections. PloS one 2010, 5(4):e10193.
147. Silverman JM, Austin LS, Hsu F, Hicks KG, Hood RD, Mougous JD: Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Molecular microbiology 2011, 82(5):1277-1290.
148. Sana TG, Hachani A, Bucior I, Soscia C, Garvis S, Termine E, Engel J, Filloux A, Bleves S: The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. The Journal of biological chemistry 2012, 287(32):27095-27105.
149. Jones C, Hachani A, Manoli E, Filloux A: An rhs Gene Linked to the Second Type VI Secretion Cluster Is a Feature of the Pseudomonas aeruginosa Strain PA14. Journal of bacteriology 2014, 196(4):800-810.
150. Lossi NS, Dajani R, Freemont P, Filloux A: Structure–function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology 2011, 157(12):3292-3305.
151. Lossi NS, Manoli E, Förster A, Dajani R, Pape T, Freemont P, Filloux A: The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheathlike structure. Journal of Biological Chemistry 2013, 288(11):7536-7548.
152. Hachani A, Lossi NS, Filloux A: A visual assay to monitor T6SS-mediated bacterial competition. JoVE (Journal of Visualized Experiments) 2013(73):e50103-e50103.
153. Jones C, Allsopp L, Horlick J, Kulasekara H, Filloux A: Subinhibitory Concentration of Kanamycin Induces the Pseudomonas aeruginosa type VI Secretion System. PloS one 2013, 8(11):e81132.
154. Zhang H, Gao Z-Q, Su X-D, Dong Y-H: Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa. FEBS letters 2012, 586(19):3193-3199.
155. Whitney JC, Beck CM, Goo YA, Russell AB, Harding BN, De Leon JA, Cunningham DA, Tran BQ, Low DA, Goodlett DR: Genetically distinct pathways guide effector export through the type VI secretion system. Molecular microbiology 2014, 92(3):529-542.
156. Hoshino T, Kose-Terai K, Sato K: Solubilization and reconstitution of the Pseudomonas aeruginosa high affinity branched-chain amino acid transport system. Journal of Biological Chemistry 1992, 267(30):21313-21318.
157. Hoshino T, Kose K: Genetic analysis of the Pseudomonas aeruginosa PAO high-affinity branched-chain amino acid transport system by use of plasmids carrying the bra genes. Journal of bacteriology 1990, 172(10):5540-5543.
158. Hoshino T, Kose K: Cloning, nucleotide sequences, and identification of products of the Pseudomonas aeruginosa PAO bra genes, which encode the high-affinity branched-chain amino acid transport system. Journal of bacteriology 1990, 172(10):5531-5539.
159. Osterberg S, Skarfstad E, Shingler V: The sigma-factor FliA, ppGpp and DksA coordinate transcriptional control of the aer2 gene of Pseudomonas putida. Environ Microbiol 2010, 12(6):1439-1451.
160. Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N: NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. Journal of bacteriology 2013, 195(16):3531-3542.
161. Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR, Cao H, Cavaliere R, James CE, Whitchurch CB, Schembri MA: MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS pathogens 2011, 7(8):e1002204.
162. Abbasi H, Sharafi H, Alidost L, Bodagh A, Zahiri HS, Noghabi KA: Response surface optimization of biosurfactant produced by Pseudomonas aeruginosa MA01 isolated from spoiled apples. Preparative biochemistry & biotechnology 2013, 43(4):398-414.
163. Déziel E, Lépine F, Milot S, Villemur R: rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 2003, 149(8):2005-2013.
164. Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, Dahlberg S, Fernebro J, Moschioni M, Masignani V et al: A pneumococcal pilus influences virulence and host inflammatory responses. Proceedings of the National Academy of Sciences of the United States of America 2006, 103(8):2857-2862.
165. Tischler AD, Camilli A: Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infection and immunity 2005, 73(9):5873-5882.
166. Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He Y-W, Zhang L-H, Heeb S, Cámara M, Williams P: Cell–cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proceedings of the National Academy of Sciences 2006, 103(17):6712-6717.
167. Brouillette E, Hyodo M, Hayakawa Y, Karaolis DK, Malouin F: 3′, 5′-Cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrobial agents and chemotherapy 2005, 49(8):3109-3113.
168. He M, Ouyang Z, Troxell B, Xu H, Moh A, Piesman J, Norgard MV, Gomelsky M, Yang XF: Cyclic di-GMP is essential for the survival of the Lyme disease spirochete in ticks. PLoS pathogens 2011, 7(6):e1002133.
169. Petersen E, Chaudhuri P, Gourley C, Harms J, Splitter G: Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes. Journal of bacteriology 2011, 193(20):5683-5691.
170. O'Malley YQ, Reszka KJ, Spitz DR, Denning GM, Britigan BE: Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology 2004, 287(1):L94-L103.
171. Ferroni A, Nguyen L, Pron B, Quesne G, Brusset M, Berche P: Outbreak of nosocomial urinary tract infections due to Pseudomonas aeruginosa in a paediatric surgical unit associated with tap-water contamination. Journal of Hospital Infection 1998, 39(4):301-307.
172. Ryan RP, Lucey J, O'Donovan K, McCarthy Y, Yang L, Tolker‐Nielsen T, Dow JM: HD‐GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environmental microbiology 2009, 11(5):1126-1136.
173. Pyzh A, Nikandrov V: [Contribution of blue-green pigments to hemolytic activity of Pseudomonas aeruginosa cultural fluid]. Zhurnal mikrobiologii, epidemiologii, i immunobiologii 2010(1):19-25.
174. Jackson AA, Gross MJ, Daniels EF, Hampton TH, Hammond JH, Vallet-Gely I, Dove SL, Stanton BA, Hogan DA: Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence. Journal of bacteriology 2013, 195(13):3093-3104.
175. Flickinger ST, Copeland MF, Downes EM, Braasch AT, Tuson HH, Eun YJ, Weibel DB: Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. J Am Chem Soc 2011, 133(15):5966-5975.
176. Mellbye B, Schuster M: Physiological framework for the regulation of quorum sensing-dependent public goods in Pseudomonas aeruginosa. Journal of bacteriology 2014, 196(6):1155-1164.
177. Morkunas B, Galloway WR, Wright M, Ibbeson BM, Hodgkinson JT, O'Connell KM, Bartolucci N, Della Valle M, Welch M, Spring DR: Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Org Biomol Chem 2012, 10(42):8452-8464.
178. Morohoshi T, Wang W-Z, Suto T, Saito Y, Ito S, Someya N, Ikeda T: Phenazine antibiotic production and antifungal activity are regulated by multiple quorum-sensing systems in Pseudomonas chlororaphis subsp. aurantiaca StFRB508. Journal of bioscience and bioengineering 2013, 116(5):580-584.
179. Tsou AM, Zhu J: Quorum sensing negatively regulates hemolysin transcriptionally and posttranslationally in Vibrio cholerae. Infection and immunity 2010, 78(1):461-467.
180. Ueda A, Wood TK: Tyrosine phosphatase TpbA of Pseudomonas aeruginosa controls extracellular DNA via cyclic diguanylic acid concentrations. Environmental microbiology reports 2010, 2(3):449-455.
181. An S, Wu Je, Zhang L-H: Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-Di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Applied and environmental microbiology 2010, 76(24):8160-8173.
182. Hay ID, Remminghorst U, Rehm BH: MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Applied and environmental microbiology 2009, 75(4):1110-1120.
183. Dong H, Liu W, Peng X, Jing Z, Wu Q: The effects of MucR on expression of type IV secretion system, quorum sensing system and stress responses in Brucella melitensis. Veterinary Microbiology 2013, 166(3–4):535-542.
184. Huang B, Whitchurch CB, Mattick JS: FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. Journal of bacteriology 2003, 185(24):7068-7076.
185. Roy AB, Petrova OE, Sauer K: The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. Journal of bacteriology 2012, 194(11):2904-2915.
186. Stelitano V, Giardina G, Paiardini A, Castiglione N, Cutruzzolà F, Rinaldo S: C-di-GMP hydrolysis by Pseudomonas aeruginosa HD-GYP phosphodiesterases: analysis of the reaction mechanism and novel roles for pGpG. PloS one 2013, 8(9):e74920.
187. Meissner A, Wild V, Simm R, Rohde M, Erck C, Bredenbruch F, Morr M, Römling U, Häussler S: Pseudomonas aeruginosa cupA‐encoded fimbriae expression is regulated by a GGDEF and EAL domain‐dependent modulation of the intracellular level of cyclic diguanylate. Environmental microbiology 2007, 9(10):2475-2485.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 strain
2. 利用新式三維細胞培養系統研究癌症與組織工程中異種細胞間交互作用
3. 治療性anti-IgE單株抗體藥物在體外重組模式及體內基因轉殖鼠之藥理作用機制
4. 建構並鑑定創傷弧菌調控子LytR的突變株
5. 創傷弧菌YJ016中調控環狀雙鳥嘌呤單磷酸相關的 vva0325-36基因群功能分析
6. DTriP-22抑制腸病毒71型之機制探討
7. 細菌基因表現之調控: HptB磷酸根轉移系統與三磷酸腺苷水解功能必須之轉錄蛋白AcoK之功能分析
8. 比較分析綠膿桿菌兩個尿嘧啶雙磷酸葡萄糖去氫酶
9. 標的表現IgE的B淋巴細胞以調控IgE之生成
10. 克雷白氏肺炎桿菌第三型線毛主要單體蛋白MrkA—線毛組裝有關區域之搜尋以及於呈現系統發展之應用
11. 綠膿桿菌HptB訊息傳遞路徑-雜合感應子之分析及下游基因之搜尋
12. 克雷白氏肺炎桿菌磷酸酪胺酸激酶KpWzc對其下游酵素ManC, Gnd活性影響之分析與Ugd磷酸酪胺酸殘基鑑定與下游受質之搜尋
13. 克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構
14. 利用磁性粒子與光敏性水膠建構特殊細胞排列的組織
15. 創傷弧菌外毒素RtxA 高量甘氨酸-天門冬氨酸區域人源單鏈抗體之篩選以及此區域的細胞表面結合特性之研究
 
* *