|
Allen, J. J. B., Harmon-Jones, E., & CavenderJ.H. (2001). Manipulation of frontal EEG asymmetry through biofeedback alters self-reported emotional responses and facial EMG. Psychophysiology, 38, 685-693. Arslan, B., Brouse, A., Castet, J., Lehembre, R., Simon, C., Filatriau, J. J., & Noirhomme, Q. (2006). A real time music synthesis environment driven with biological signals. Paper presented at the ICASSP. Bergen, D. (1988). ENcyclopedia of neuroscience. JAMA, 260(1), 104-104. doi: 10.1001/jama.1988.03410010112050 Bos, D. (2007). EEG-based emotion recognition. The Influence of Visual and Auditory Stimuli. University of Twente. Retrieved from Bos, D. O. (2006). EEG-based Emotion Recognition - The Influence of Visual and Auditory Stimuli. Emotion, 57(7), 1798-1806. doi: 10.1109/TBME.2010.2048568 Bradley, M. M., & Lang, P. J. (1994). Measuring Emotion: The Self-assessment Manikin and the Semantic Differential Journal of Behavior Therapy and Experimental Psychiatry, 25, 49-59. Cahn, B. R., & John, P. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132 (2), 180-211. Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl., 6(1), 1-6. doi: 10.1145/1007730.1007733 Coan, J., & Allen, J. J. B. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67, 7-49. Coles, G.H., M., & Rugg, M. D. (1996). Event-related brain potentials: an introduction. 1-27. Crowley, K., Sliney, A., Pitt, I., & Murphy, D. (2010). Evaluating a Brain-Computer Interface to Categorise Human Emotional Response. IEEE International Conference on Advanced Learning Technologies, 10, 276-278. del R Millan, J., Mourino, J., Franze, M., Cincotti, F., Varsta, M., Heikkonen, J., & Babiloni, F. (2002). A local neural classifier for the recognition of EEG patterns associated to mental tasks. Neural Networks, IEEE Transactions on, 13(3), 678-686. doi: 10.1109/TNN.2002.1000132 Demšar, J., Curk, T., & Erjavec, A. (2013). Orange: Data Mining Toolbox in Python. Journal of Machine Learning Research, 2349−2353. Ertl, M. (2013). Emotion regulation by cognitive reappraisal — The role of frontal theta oscillations. NeuroImage, 81, 412-421. Fei, S., Liwen, X., Cai, A., Yibing, W., & Junshui, M. (2010, 23-26 Aug. 2010). EEG-based Personal Identification: from Proof-of-Concept to A Practical System. Paper presented at the Pattern Recognition (ICPR), 2010 20th International Conference on. Garrett, D., Peterson, D. A., Anderson, C. W., & Thaut, M. H. (2003). Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 11(2), 141-144. doi: 10.1109/TNSRE.2003.814441 Goh, C. C. M. (2000). A cognitive perspective on language learners' listening comprehension problems. System, 28(1), 55-75. Goldstein, S. M., Johnston, R., Duffy, J., & Rao, J. (2002). The service concept: the missing link in service design research? Journal of Operations Management, 20(2), 121-134. Han, J. W. (2005). Data mining: concepts and techniques (3nd ed.). Singapore: Morgan kaufmann. Harmony, T., Fernández, T., Silva, J., Bernal, J., Díaz-Comas, L., Reyes, A., . . . Rodríguez, M. (1996). EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. International Journal of Psychophysiology, 24(1–2), 161-171. He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Trans. on Knowl. and Data Eng., 21(9), 1263-1284. doi: 10.1109/tkde.2008.239 Henriques, J. B., & Davidson, R. J. (1991). Left Frontal Hypoactivation in Depression Journal of Abnormal Psychology, 100, 535-545. Huettel, S. A., McCarthy, G., & Song, A. W. (2009). Functional Magnetic Resonance Imaging (2 ed. ed.). Massachusetts: Sinauer. Jain, A. K., Jianchang, M., & Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. Computer, 29(3), 31-44. doi: 10.1109/2.485891 Jrad, N., Congedo, M., Phlypo, R., Rousseau, S., Flamary, R., Yger, F., & Rakotomamonjy, A. (2011). sw-SVM: sensor weighting support vector machines for EEG-based brain–computer interfaces. Journal of Neural Engineering, 8(5), 056004. Kahana, M. J., Sekuler, R., Caplan, J. B., Kirschen, M., & Madsen, J. R. (1999). Human theta oscillations exhibit task dependence during virtual maze navigation. Nature, 399(6738), 781-784. Kaiyang, L., Xiaodong, Z., & Yuhuan, D. (2013, Oct. 30 2013-Nov. 2 2013). A SVM based classification of EEG for predicting the movement intent of human body. Paper presented at the Ubiquitous Robots and Ambient Intelligence (URAI), 2013 10th International Conference on. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 29(2–3), 169-195. Kottaimalai, R., Pallikonda Rajasekaran, M., Selvam, V., & Kannapiran, B. (2013). EEG Signal Classification using Principal Component Analysis with Neural Network in Brain Computer Interface Applications. Paper presented at the IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology. Kumar, V. (2012). Design Method: A STRUCTURED APPROACH FOR DRIVING INNOVATION IN YOUR ORGANIZATION. New Jersey: John Willy & Sons. Kwang-Ok, A., Jong-Bae, K., Won-Kyoung, S., & In-Ho, L. (2010, 26-29 Sept. 2010). Development of an emergency call system using a brain computer interface (BCI). Paper presented at the Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on. Larsen, E. A. (2011). Classification of EEG Signals in a Brain-Computer Interface System. Norwegian University of Science and Technology. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B. (2007). TOPICAL REVIEW: A review of classification algorithms for EEG-based brain computer interfaces. Journal of Neural Engineering, 4(2). doi: 10.1088/1741-2560/4/2/R01 Mak, J. N., Chan, R. H. M., & Wong, S. W. H. (2013, 10-13 Nov. 2013). Evaluation of mental workload in visual-motor task: Spectral analysis of single-channel frontal EEG. Paper presented at the Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE. Miltner, W. H. R., Braun, C., ArnoldMatthias, Witte, H., & Taub, E. (1999). Coherence of gamma-band EEG activity as a basis for associative learning. Nature, 397(6718), 434-436. Mostow, J., Chang, K.-M., & Nelson, J. (2011). Toward exploiting EEG input in a reading tutor. Paper presented at the Proceedings of the 15th international conference on Artificial intelligence in education, Auckland, New Zealand. Murugappan, M., & Murugappan, S. (2013). Human emotion recognition through short time Electroencephalogram (EEG) signals using Fast Fourier Transform (FFT). Paper presented at the IEEE International Colloquium on Signal Processing and its Applications 9th. Murugappan, M., Ramachandran, N., & Sazali, Y. (2010). Classification of human emotion from EEG using discrete wavelet transform. Journal of Biomedical Science and Engineering, 3, 390-396. NEUROSKY. (2009). Brain Wave Signal (EEG) Niedermeyer, E., & Silva, F. L. d. (2004). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields: Lippincot Williams & Wilkins. Niemic, C. P. (2002). Studies of emotion: A theoretical and empirical review of psychophysiological studies of emotion. Journal of Undergraduate Research, 1, 15-18. Peng, H., Hu, B., Liu, Q. Y., Dong, Q. X., Zhao, Q. L., & Moore, P. (2011, 23-26 May 2011). User-centered depression prevention: An EEG approach to pervasive healthcare. Paper presented at the Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2011 5th International Conference on. Perez, J., & Delechelle, E. (2013, 17-19 June 2013). On the measurement of image quality perception using frontal EEG analysis. Paper presented at the Smart Communications in Network Technologies (SaCoNeT), 2013 International Conference on. Pfurtscheller, G., & Lopes Da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110 (11), 1842-1857. Pine, I. I. B. J., & Gilmore, J. H. (1998). WELCOME TO THE EXPERIENCE ECONOMY. Harvard Business Review, 76(4), 97-105. Sahito, F., & Wolfgang, S. (2012). Functional Magnetic Resonance Imaging and the Challenge of Balancing Human Security with State Security. Human Security Perspectives, 1, 38-66. Schacter, D. L. (1977). EEG theta waves and psychological phenomena: A review and analysis. Biological Psychology, 5(1), 47-82. Seo, S., Gil, Y., & Lee, J. (2008). The relation between affective style of stressor on EEG asymmetry and stress scale during multi-modal task. Paper presented at the Third 2008 International Conference on Convergence and Hybrid Information Technology. Spengler, C., Wirth, W., & Sigrist, R. (2010). 360-Degree-Touchpoint-Management - How important is twitter for our brand? Content published in: Marketing Review 14-20. Srinivasa, K. G., Singh, A., Thomas, A. O., Venugopal, K. R., & Patnaik, L. M. (2005, 14-17 Dec. 2005). Generic Feature Extraction for Classification using Fuzzy C - Means Clustering. Paper presented at the Intelligent Sensing and Information Processing, 2005. ICISIP 2005. Third International Conference on. Stickdorn, M., & Schneider, J. (2010). THIS IS SERVICE DESIGN THINKING. Netherland: BIS Publishers. Subasia, A., & Ercelebi, E. (2005). Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine, 78, 87-99. Tatum, W. O., Husain, A. M., & Benbadis, S. R. (2008). Handbook of EEG Interpretation: Demos Medical. Vempati, S., Vedaldi, A., Zisserman, A., & Jawahar, C. V. (2010). Generalized RBF feature maps for Efficient Detection (F. e. e. a. Z. Labrosse, Reyer and Liu, Yonghuai and Tiddeman, Bernie Ed.): BMVA Press. Vidal, J. (1973). Toward direct brain-computer communication. Annual review of biophysics and bioengineering, 2, 157-180. Vladimir, F., Ruth, R., & V., R. (2001). Multiplicity of the α Rhythm in Normal Humans. Journal of Clinical Neurophysiology, 18 (4), 331-344. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767-791. Xu, H., & Plataniotis, K. N. (2012). Affect recognition using EEG signal. Paper presented at the Multimedia Signal Processing (MMSP), Banff, AB. Yoon, H. (2013). Emotion Recognition of Serious Game Players Using a Simple Brain Computer Interface. IEEE ICTC, 783-786. Yuan, Y., Li, Y., Yu, D., & D.P., M. (2008). Delay Time-Based Epileptic EEG Detection Using Artificial Neural Network. Paper presented at the Bioinformatics and Biomedical Engineering. Yuen, C. T., San, W. S., Seong, T. C., & Rizon, M. (2009). Classification of Human Emotions from EEG Signals using Statistical Features and Neural Network. International Journal of Integrated Engineering, 1(3), 71 - 79. Zhang, Y., Kong, F., Chen, H., Jackson, T., Han, L., Meng, J., . . . Hasan, A. N. (2011). Identifying Cognitive Preferences for Attractive Female Faces: An Event-Related Potential Experiment Using a Study-Test Paradigm. Journal of Neuroscience Research, 89, 1887-1893.
|