帳號:guest(18.117.186.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃鈺淳
論文名稱(中文):從全球技術看台灣產業的發展:以生質丁醇為例
論文名稱(外文):Developing Taiwan’s Emerging Industry by Means of Global Technology Layout:The Case of Biobutanols
指導教授(中文):胡美智
口試委員(中文):張元杰
耿筠
學位類別:碩士
校院名稱:國立清華大學
系所名稱:科技管理研究所
學號:101073702
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:47
中文關鍵詞:生質能源生質丁醇藻類生質能生物精煉
外文關鍵詞:BiofuelBiobutanolAlgal BiomassBiorefinery
相關次數:
  • 推薦推薦:0
  • 點閱點閱:338
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
生質能相較於傳統化石能源,具有避免大氣中二氧化碳濃度上升以及含硫量低等優點。與其他再生能源相較,生質能生產技術成熟,應用方式廣泛,與現有能源應用的軟硬體設施相容性高,具有取代交通運輸用燃料的能力。
其中,丁醇的用途廣,除了可作為燃料添加劑之外,還是塑料工業中重要的原料化學品;以往每年10〜12十億磅的丁醇由石化原料製成,且需求可能尚在增加中。使用廉價的非食物含碳基質來發展生質丁醇,以達到經濟可行性,是很重要的。
四面環海的台灣,占地利優勢,應嘗試發展以藻類作為生物質;藻類是光自營的生物,生產方法簡便,且以「生物精煉」的概念來看,不僅可提煉藻油、或以藻類多糖醱酵產生燃料,也能夠得到豐富的Omega-3脂肪酸以及DHA等成份,而這些成份皆可作為珍貴食品添加物。如果成功發展生質能源,將成為可持續生產的優越生質燃料。
最後,生質能源的技術可以有延續性,即使使用不同原料或產生不同目標產物,技術或菌秼可能可以相互流用,提升技術研發的價值,如丁醇生產獲得的知識可用於生產其他高鏈醇,例如戊醇。

關鍵字:生質能源、生質丁醇、藻類生質能、生物精煉
Biomass energy compared to traditional fossil fuels, can reduce the concentration of carbon dioxide in the atmosphere, and its sulfur content is low. Compared with other renewable energy sources, biomass energy production technology is mature and widely used, and is highly compatible with existing energy facilities such as hardware and software, has the ability to replace transport fuels.
Wherein biobutaonl could be used as a fuel additive, and plastic important industrial raw chemical also. Annually in the past 10 to 12 billions of pounds of biobutanol is made from the petrochemical raw materials and demand may still increase. Development of biobutanol, non-food use of inexpensive carbon substrates to achieve economic viability is important.
Taiwan surrounded by sea should try to develop algae as biomass. Since algae is light self-creatures, with "bio-refinery" concept point of view, not only can extract algae oil, polysaccharide fermentation to produce fuels, but also to get rich DHA Omega-3 fatty acids and other ingredients, and these ingredients can be as precious food additives. If development of biomass energy is success, it will become the sustainable production of biofuels.
Finally, biomass energy technologies might have things in common, even using different biomass or producing different target products, technology or bacteria stain may be able to flow with each other, which can enhance the value of technology research and development. For example, knowledge of butanol production can be used to produce other high chain alcohols such as amyl alcohol.

Key words: Biofuel, Biobutanol, Algal Biomass, Biorefinery
摘要 i
Abstract ii
表目錄 vi
圖目錄 vii
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 2
壹 動機 2
貳 目的 3
第二章 文獻回顧 5
第一節 生質能 5
壹 定義 5
貳 生物精煉(bio-refinery) 9
參 纖維素生質能 11
肆 藻類生質能 11
第二節 生質丁醇 12
壹 丁醇的應用 13
貳 技術與發展 13
參 國外主要廠商 16
第三章 研究方法 18
第一節 研究方法 18
第二節 研究架構 18
壹 研究假設與限制 18
貳 研究步驟 19
第四章 生質能源與技術 22
第一節 生物質 22
壹 糖蜜與澱粉 23
貳 纖維素生物質 23
參 藻類生物質 25
第二節 反應流程 25
壹 上游處理 26
貳 醱酵 30
參 下游處理 32
肆 其他可改善結果的方法 33
第三節 國外廠商技術專利分析 34
壹 專利地圖 34
貳 技術分類 40
第五章 結論與建議 41
第一節 專利分析 41
第二節 台灣生質能 41
第三節 結論 42
第四節 建議 43
參考資料或文獻 44
中文文獻 44
英文文獻 44
中文文獻
台灣綜合研究院,因應氣候變化綱要公約資訊網。
經濟部能源局,2012年能源產業技術白皮書。
古森本,2008。生質能源作物之開發與潛力。植物種苗生技,13,pp.46-53。
王革華、 張勝雄、潘恆堯、朱紹祚、薛玉如,2008年,能源與永續發展,新文京開發出版,pp.120-123、176-181。
李為民、王龍耀、許娟,2012年,新能源與化工概論,五南文化出版社。
工研院IEK,2010年,綠色能源產業年鑑。
經濟部, 工研院IEK,2013年5月,新興能源產業年鑑。
姚向君、田宜水、張勝雄、張春田、梁財春,2008年,生質能源-綠色黃金開發技術,新文京出版社。
生質能源趨勢BET(BioEnergy Today). bioenergy-today.blogspot.com/

英文文獻
Abbasi T, Abbasi SA. Biomass energy and the environmental impacts associated with its production and utilization. Renew Sust Energy Rev. 2010; 14:919–37.
Brinkhuis, B.H. et al. (1987) Laminaria cultivation in the far east and North America. In Seaweed Cultivation for Renewable Resources (Bird, K.T. and Benson, P.H., eds), pp. 107–146, Elsevier
Brandao P, Philippou A, Rocha J and Anderson MW, Dehydration of alcohols by mircoporous niobium silicate AM-11. Catalysis Lett 80:99–102(2002)
Chemical Economics Handbook Report, Butylenes, SRI Consulting, Englewood, CA, USA (2008) p. 7.
Cherubini F. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manage 2010;51:1412–21.
Dȕrre, P., 2007. Biobutanol: an attractive biofuel. Biotechnol. J. 2, 1525–1534.
Ezeji T, Blaschek HP. Fermentation of dried distillers’ grains and soluble (DDGS) hydrolysates to solvents and value-added products by solventogenic Clostridia. Bioresour Technol 2008;99:5232–42.
Ellis, J.T., Hengge, N.N., Sims, R.C., Miller, C.D., 2012. Acetone, butanol, and ethanol production from wastewater algae. Bioresour. Technol. 111, 491–495.
García, V., Pakkilaa, J., Ojamob, H., Muurinena, E., Keiskia, L. R. 2011. Challenges in biobutanol production: How to improve the efficiency? Renewable and Sustainable Energy Reviews 15, 964-980.
Gabriel CL, Crawford FM. Development of the butyl-acetonic fermentation industry. Ind Eng Chem 1930;22:1163–5
Gao, K. and McKinley, K.R. (1994) Use of macroalgae for marine biomass production and CO2 remediation – a review. J. Appl. Phycol. 6, 45–60
Heipieper HJ, Keweloh H, Rehm HJ. Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 1991;57:1213–7.
Jang, Y-S, Malaviya, A., Cho C., Lee, J., Lee, SY., Butanol production from renewable biomass by clostridia. Bioresource Technology 123 (2012) 653–663
James Clark and Fabien Deswarte. 2008. Introduction to Chemicals from Biomass. 6. John Wiley & Sons, Ltd
John Rojan, P. et al. (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102, 186–193
Jones DT, Woods DR. Acetone–butanol fermentation revisited. Microbiol Rev 1986;50:484–524.
Kamm B, Kamm M, Gruber P, editors. Biorefineries – industrial processes and products. status quo and future directions, vol.2. Weinheim: Wiley; 2006.
Lee, S.Y., Park, J.H., Jang, S.H., Nielsen, L.K., Kim, J., Jung, K.S., 2008. Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101, 209–228.
Lee, K.S. et al. (2011) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.Biotechnol. Bioeng. 108, 621–631
Mascal M. (2012). Chemicals from biobutanol: technologies and markets. Bioref. 6:483-493.
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 2005;96:673–86.
Wei, N., Quarterman, J., and Jin, Y. S., Marine macroalgae : an untapped resource for producing fuels and chemicals. Trends in Biotechnology. February 2013, Vol. 31, No. 2
Nigam, P.S. and Singh, A. (2011) Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37, 52–68
Papoutsakis, E.T., 2008. Engineering solventogenic clostridia. Curr. Opin. Biotechnol.19, 420–429.
Subhadra, B. and Edwards, M. (2010) An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38, 4897–4902
Singh, A., Olsen, S. I., A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy 88 (2011) 3548–3555.
Sun Y, Cheng JY. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 2002 ; 83:1–11.
Taherzadeh MJ, Karimi K. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2007 ; 2:472–99.
von Sivers M, Zacchi G. A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol 1995;51:43–52.
Wargacki, A.J. et al. (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335, 308–313
Willfor SM, AhotupaMO, HemmingJE, ReunanenMHT, Eklund PC, Sjoholm RE, et al. Antioxidant activity of knotwood extractives and phenolic compounds of selected tree species. J Agric Food Chem 2003;51:7600–6.
Yoon, M.H., Lee, Y.W., Lee, C.H., Seo, Y.B., SeoSimultaneous production of bio-ethanol and bleached pulp from red algae. Bioresour Techno 126 (2012) 198–201
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *