帳號:guest(18.225.56.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘明陽
作者(外文):Ming-Yang Pan
論文名稱(中文):以奈米結構激發表面電漿應用於波導與生醫檢測器
論文名稱(外文):Applications of Nanostructure-Excited Surface Plasmon: Waveguides and Bio-Sensors
指導教授(中文):王立康
魏培坤
指導教授(外文):Wang,Likarn
Wei,Pei-Kuen
口試委員(中文):江海邦
李柏璁
施閔雄
口試委員(外文):Chiang,Hai-Pang
Lee,Po-Tsung
Shih,Min-Hsiung
學位類別:博士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:101066805
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:93
中文關鍵詞:表面電漿共振生物感測器表面電漿波導
外文關鍵詞:surface plasmon resonancebio-sensorplasmonic waveguide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:136
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主題為利用奈米金屬結構激發表面電漿, 並應用於波導與生醫感測器。本文依表面電漿激發架構分成兩大部分: 奈米孔洞近場激發及週期結構耦合。 在首個章節, 我簡單介紹表面電漿的光學特性及常見耦合方法, 並從應用領域的觀點出發, 探討適用於波導及生醫感測器的激發與量測架構。
在波導研究方面, 我利用可變波長近場激發系統搭配洩漏輻射顯微鏡來研究表面電漿波導中的模態特性, 在第三章中呈現各波段在介電質負載表面電漿波導中的傳播長度、 多模態波導自我干涉圖形量測與不同波長的表面電漿在雙波導結構中的耦合特性研究。 此架構展現出在應用上的優勢, 如即時觀測、 激發波長與位置可調, 以及低背景雜訊。 基於此架設, 我在第四章示範了雙層表面電漿波導的開發工作, 此波導建立於一高一低折射率的介電質材料, 從數值模擬和實驗中證明了 表面電漿在其中傳播時, 它能降低傳輸損耗, 跟單層介電質負載表面電漿波導在同樣條件下比較, 傳播長度增加為 1.6 倍。
在生醫檢測器部分, 我利用 週期性奈米金屬結構耦合表面電漿波, 利用它對表面折射率敏銳的特性應用於抗體檢測。 我使用 奈米壓印技術在塑膠基板上製作該結構, 大幅了減少製作成本與時間。 在光學特性方面, 此結構能產生多種表面電漿模態, 藉由模態耦合效應在穿透光譜中產生一非對稱的峰值。 此激發架構優勢在於能改變結構參數調控共振波長, 達到模態耦合, 進而提升折射率靈敏度。本文在第五章示範如何利用 在雙週期金網格結構中的菲諾共振推測表面抗原/抗體的有效折射率及厚度, 我提出傳播波法利用光學路徑修正得到精確的表面電漿傳播常數, 能準確的計算出表面折射率及厚度, 跟環境靈敏度法相較之下, 傳播波法在介電質層較厚的條件下擁有較高的準確性。在第六章, 我首度將數位檢測的概念引入表面電漿偵測。 藉由棋盤式的結構設計, 實驗與模擬結果皆顯示偏振相干的表面電漿能在特定區域中被激發, 隨後,這些棋盤格被用來當作檢測單元, 在經過單元大小與靈敏度的優化之下, 我使用了 12.5 微米邊長的檢測單元進行抗體偵測實驗, 數位偵測相較類比偵測, 提升了 1000 倍的偵測極限與 100 倍的動態範圍, 此方法適用於偵測極低濃度且分布不均勻的待測樣品。
This dissertation contains the studies of metallic nanostructure-excited surface plasmon polaritions (SPPs), surface plasmon resonances (SPR), and their applications for the waveguides and bio-sensors. Chapters were assorted according to the excitation configurations: nanohole near-field excitation and periodic nanostructure
coupling. In the first chapter, I introduced the basic optical properties of surface plasmon and methods for SPPs/SPR excitation. After that, form the viewpoint of application, I conferred on the suitable configuration to exciting and measuring SPs in waveguides and bio-sensors.
In the studies of waveguides, I used a combination of wavelength-tunable near-field excitation system and leakage radiation microscopy to study the mode properties in plasmonic waveguides. In the Chapter 3, wavelength dependent propagation length, multimode interference, and coupling length in a dual waveguide in a dielectric-loaded SPP waveguide (DLSPPW) were presented. This configuration shows its advantage in real-time plasmonic waveguide characterization with tunable wavelength and excitation positions, and low background noise. Based on these, in Chapter 4, I introduced the two-layer DLSPPW (TDLSPPW). This waveguide consisted of two dielectric layers (high-index/low-index) on a silver film. Experimental and simulated results showed it can reduces the transmission loss of propagating SPPs. The propagation length of SPPs in a TDLSPPW provides about 1.6 times longer than in DLSPPW.
In the developing of biosensor, the periodic metallic nanostructures were employed into SPR coupling. Based on the highly sensitive to the environmental refractive index (RI), the SPR was applied in antibodies detections. I used thenanoimprint process to fabricating nanostructure onto plastic substrates. This process has reduced the cost and time of procedure. In the optical properties, the presented structure provides many modes of SPR. By energy coupling between modes, a non-symmetry peak in the transmission spectrum was founded. This excitation
configuration showed the advantage in resonance wavelength- and modes-tunable. It enhanced the RI sensitivity.
In Chapter 5, I demonstrated that how to calculated the effective refractive index and thickness of biomolecular layer by Fano resonance modes using wave equation method in dual-period gold nanogrid arrays. A modified dispersion relation was suggested to getting an accurate propagation constant. By applying it into wave
equation, thickness determined by wave equation method is more accurate than by bulk sensitivity method.
In Chapter 6, I firstly introduced the concept of digital detection into SPR-based bio-sensor. By a checkerboard design, experimental and simulated results showed that polarization dependent SPR can be excited in a local area. These areas were employed into sensing elements. After the optimization, I used a hunger of 12.5 um × 12.5um sensing elements to detecting antibodies. The experiment showed that limit of the digital detection is about 1000 times lower than traditional analog detection and the dynamic range is about 100 times higher than conventional SPR detection. The proposed method is very useful for detecting ultralow concentration of analytes with non-uniform distribution on the sensor surface.
Chapter 1 Introduction ............................................................................................ 1
1.1 Introduction to surface plasmon............................................................. 1
1.2 Theories for surface plasmon................................................................. 3
1.2.1 Propagating surface plasmon ................................................................. 4
1.2.2 Excitation of surface plasmons .............................................................. 8
Prism coupling........................................................................................ 8
Grating coupling..................................................................................... 9
Others methods..................................................................................... 10
1.3 Surface plasmon polariton waveguide ................................................. 12
1.3.1 Guiding of surface plasmon waves through nanostructure .................. 13
1.3.2 Applications of surface plasmon waveguide........................................ 15
1.4 Surface plasmon resonance sensor....................................................... 18
1.4.1 Working principles of surface plasmon resonance sensor.................... 18
1.4.2 Performances of surface plasmon resonance sensor ............................ 21
1.4.3 SPR imaging senor............................................................................... 23
Chapter 2 Materials and Methods ......................................................................... 28
2.1 Surface plasmon waveguide ................................................................ 28
2.1.1 Fabrication of surface plasmon waveguide .......................................... 28
2.1.2 Near-field excitation and leakage radiation observing system............. 30
2.2 Surface plasmon resonance sensor....................................................... 31
2.2.1 Fabrication of surface plasmon resonance sensor ................................ 32
2.2.2 System of measurement ....................................................................... 34
Transmission spectrum......................................................................... 34
Hyperspectral imaging system ............................................................. 35
2.2.3 Determination of effective RI and thickness ........................................ 37
Bulk sensitivity method........................................................................ 37
Wave equation method ......................................................................... 38
Chapter 3 Spectral and Mode Properties of Surface Plasmon Polariton
Waveguides Study by Near-field Excitation and Leakage-mode
radiation measurement ......................................................................... 40
3.1 Introduction and motivation................................................................. 40
3.2 Result and discussion........................................................................... 41
3.2.1 Optical properties of DLSPPW............................................................ 41
3.2.2 DLSPPW-based components................................................................ 43
Multimode interference device............................................................. 43
Dual DLSPPWs coupler....................................................................... 46
Chapter 4 Enhancing Surface Plasmon Polariton Propagation by Two-layer
Dielectric-loaded Waveguides on Silver Surface ................................. 49
4.1 Introduction and motivation................................................................. 49
4.2 Result and discussion........................................................................... 50
4.2.1 Modes modeling and calculations ........................................................ 50
4.2.2 Optical properties of TDLSPPW.......................................................... 52
Mode simulation................................................................................... 52
Propagation length & Bending loss...................................................... 55
Chapter 5 Determination of the Effective Index and Thickness of Biomolecular
Layer by Fano-Resonances in Gold Nanogrid ..................................... 57
5.1 Introduction and motivation................................................................. 57
5.2 Result and discussion........................................................................... 58
5.2.1 Optical properties of dual period nanogrid sensor ............................... 58
Resonant modes.................................................................................... 58
Propagation constant ............................................................................ 60
5.2.2 Determination of effective thickness.................................................... 63
Chapter 6 Digital surface plasmon resonance detection using checkerboarded
silver-capped nanoslit arrays ................................................................ 67
6.1 Introduction and motivation................................................................. 67
6.2 Result and discussion........................................................................... 69
6.2.1 Sensor performance.............................................................................. 69
Polarization-dependent sensing elements............................................. 69
Size-dependent Sensitivity ................................................................... 73
6.2.2 Digital sensing...................................................................................... 76
6.2.3 Comparison between analog and digital detection............................... 80
Chapter 7 Conclusion and Future Works .............................................................. 82
Reference ..................................................................................................................... 85
[1] J.L. Arlett, E.B. Myers, M.L. Roukes, Comparative advantages of mechanical
biosensors, Nat Nano, 6, 203-215, (2011).
[2] P.B. Johnson, R.W. Christy, Optical constants of the noble metals, Physical Review
B, 6, 4370-4379, (1972).
[3] H. Ditlbacher, J.R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A.
Leitner, F.R. Aussenegg, Fluorescence imaging of surface plasmon fields,
Applied Physics Letters, 80, 404-406, (2002).
[4] S.-Y. Hsu, T.-H. Jen, E.-H. Lin, P.-K. Wei, Near-field coupling method for
subwavelength surface plasmon polariton waveguides, Plasmonics, 6, 557-563,
(2011).
[5] S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G.
Requicha, Local detection of electromagnetic energy transport below the
diffraction limit in metal nanoparticle plasmon waveguides, Nat Mater, 2,
229-232, (2003).
[6] F.M. Wang, H. Liu, T. Li, S.M. Wang, S.N. Zhu, J. Zhu, W. Cao, Highly confined
energy propagation in a gap waveguide composed of two coupled nanorod
chains, Applied Physics Letters, 91, 133107, (2007).
[7] A.W. Sanders, D.A. Routenberg, B.J. Wiley, Y. Xia, E.R. Dufresne, M.A. Reed,
Observation of plasmon propagation, redirection, and fan-out in silver
nanowires, Nano Letters, 6, 1822-1826, (2006).
[8] S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, T.W. Ebbesen, Channel
plasmon-polariton fuiding by subwavelength metal grooves, Physical Review
Letters, 95, 046802, (2005).
[9] J. Grandidier, S. Massenot, G.C. des Francs, A. Bouhelier, J.C. Weeber, L. Markey,
A. Dereux, J. Renger, M.U. González, R. Quidant, Dielectric-loaded surface
plasmon polariton waveguides: Figures of merit and mode characterization by
image and Fourier plane leakage microscopy, Physical Review B, 78, 245419,
(2008).
[10] R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X.
Zhang, Plasmon lasers at deep subwavelength scale, Nature, 461, 629-632,
(2009).
[11] T. Holmgaard, Z. Chen, S.I. Bozhevolnyi, L. Markey, A. Dereux, A.V. Krasavin,
A.V. Zayats, Bend- and splitting loss of dielectric-loaded surface
plasmon-polariton waveguides, Opt. Express, 16, 13585-13592, (2008)
[12] T. Holmgaard, Z. Chen, S.I. Bozhevolnyi, L. Markey, A. Dereux,
Dielectric-loaded plasmonic waveguide-ring resonators, Opt. Express, 17,
2968-2975, (2009).
[13] Z. Han, E. Forsberg, S. He, Surface plasmon Bragg gratings formed in
metal-insulator-metal waveguides, IEEE Photonics Technology Letters, 19,
91-93, (2007).
[14] J. Gosciniak, S.I. Bozhevolnyi, T.B. Andersen, V.S. Volkov, J. Kjelstrup-Hansen,
L. Markey, A. Dereux, Thermo-optic control of dielectric-loaded plasmonic
waveguide components, Opt. Express, 18, 1207-1216, (2010).
[15] H. Wei, Z. Wang, X. Tian, M. Kall, H. Xu, Cascaded logic gates in nanophotonic
plasmon networks, Nat Commun, 2, 387, (2011).
[16] S.-H. Wu, K.-L. Lee, A. Chiou, X. Cheng, P.-K. Wei, Optofluidic platform for
real-time monitoring of live cell secretory activities using Fano resonance in
gold nanoslits, Small, 9, 3532-3540, (2013).
[17] S.-H. Wu, S.-Y. Hsieh, K.-L. Lee, R.-H. Weng, A. Chiou, P.-K. Wei, Cell viability
monitoring using Fano resonance in gold nanoslit array, Applied Physics Letters,
103, 133702, (2013).
[18] R. Karlsson, A. Fält, Experimental design for kinetic analysis of protein-protein
interactions with surface plasmon resonance biosensors, Journal of
Immunological Methods, 200, 121-133, (1997).
[19] S. Hearty, P. Leonard, R. O’Kennedy, Measuring Antibody–antigen binding
kinetics using surface plasmon resonance, in: P. Chames (Ed.) antibody
engineering: methods and protocols, Second Edition, Humana Press, Totowa,
NJ, 2012, pp. 411-442.
[20] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary
optical transmission through sub-wavelength hole arrays, Nature, 391, 667-669,
(1998).
[21] A.V. Kabashin, S. Patskovsky, A.N. Grigorenko, Phase and amplitude
sensitivities in surface plasmon resonance bio and chemical sensing, Opt.
Express, 17, 21191 -21204, (2009).
[22] S.Y. Wu, H.P. Ho, W.C. Law, C. Lin, S.K. Kong, Highly sensitive differential
phase-sensitive surface plasmon resonance biosensor based on the
Mach–Zehnder configuration, Opt. Lett., 29, 2378-2380, (2004).
[23] J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review,
Sensors and Actuators B: Chemical, 54, 3-15, (1999).
[24] S.G. Nelson, K.S. Johnston, S.S. Yee, Proceedings of the Sixth International
Meeting on Chemical SensorsHigh sensitivity surface plasmon resonace sensor based on phase detection, Sensors and Actuators B: Chemical, 35, 187-191,
(1996).
[25] S.K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon
resonance of gold nanoparticles:  from theory to applications, Chemical Reviews,
107, 4797-4862, (2007).
[26] E. Yeatman, E.A. Ash, Surface plasmon microscopy, Electronics Letters, 23,
1091-1092, (1987).
[27] S.O. Jung, H.-S. Ro, B.H. Kho, Y.-B. Shin, M.G. Kim, B.H. Chung, Surface
plasmon resonance imaging-based protein arrays for high-throughput screening
of protein-protein interaction inhibitors, PROTEOMICS, 5, 4427-4431, (2005).
[28] C.T. Campbell, G. Kim, SPR microscopy and its applications to high-throughput
analyses of biomolecular binding events and their kinetics, Biomaterials, 28,
2380-2392, (2007).
[29] Y. Luo, F. Yu, R.N. Zare, Microfluidic device for immunoassays based on surface
plasmon resonance imaging, Lab on a Chip, 8, 694-700, (2008).
[30] A.W. Peterson, M. Halter, A. Tona, K. Bhadriraju, A.L. Plant, Surface plasmon
resonance imaging of cells and surface-associated fibronectin, BMC Cell
Biology, 10, 16-16, (2009).
[31] Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, M. Hide, Evaluation of
peripheral blood basophil activation by means of surface plasmon resonance
imaging, Biosensors and Bioelectronics, 32, 62-68, (2012).
[32] I. Stojanović, R.B.M. Schasfoort, L.W.M.M. Terstappen, Analysis of cell surface
antigens by surface plasmon resonance imaging, Biosensors and Bioelectronics,
52, 36-43, (2014).
[33] J. Zhou, J. Ralston, R. Sedev, D.A. Beattie, Functionalized gold nanoparticles:
Synthesis, structure and colloid stability, Journal of Colloid and Interface
Science, 331, 251 -262, (2009).
[34] J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán, P. Mulvaney, Gold
nanorods: Synthesis, characterization and applications, Coordination Chemistry
Reviews, 249, 1870-1901, (2005).
[35] R. Steve, P. Robert, A review of focused ion beam applications in microsystem
technology, Journal of Micromechanics and Microengineering, 11, 287, (2001).
[36] C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo,
L. Couraud, H. Launois, Electron beam lithography: resolution limits and
applications, Applied Surface Science, 164, 111-117, (2000).
[37] H. Im, A. Lesuffleur, N.C. Lindquist, S.-H. Oh, Plasmonic nanoholes in a
multichannel microarray format for parallel kinetic assays and differential
sensing, Analytical Chemistry, 81, 2854-2859, (2009).
[38] M.P. Raphael, J.A. Christodoulides, S.P. Mulvaney, M.M. Miller, J.P. Long, J.M.
Byers, A new methodology for quantitative LSPR biosensing and imaging,
Analytical Chemistry, 84, 1367-1373, (2012).
[39] Marc P. Raphael, Joseph A. Christodoulides, James B. Delehanty, James P. Long,
Pehr E. Pehrsson, Jeff M. Byers, Quantitative LSPR imaging for biosensing
with single nanostructure resolution, Biophysical Journal, 104, 30-36, (2013).
[40] J.A. Ruemmele, W.P. Hall, L.K. Ruvuna, R.P. Van Duyne, A localized surface
plasmon resonance imaging instrument for multiplexed biosensing, Analytical
Chemistry, 85, 4560-4566, (2013).
[41] Y.-J. Chang, Y.-C. Chen, H.-L. Kuo, P.-K. Wei, Nanofiber optic sensor based on
the excitation of surface plasmon wave near fiber tip, BIOMEDO, 11,
014032-014032-014035, (2006).
[42] T. Holmgaard, S.I. Bozhevolnyi, Theoretical analysis of dielectric-loaded surface
plasmon-polariton waveguides, Physical Review B, 75, 245405, (2007).
[43] K.-L. Lee, M.-L. You, C.-H. Tsai, E.-H. Lin, S.-Y. Hsieh, M.-H. Ho, J.-C. Hsu,
P.-K. Wei, Nanoplasmonic biochips for rapid label-free detection of
imidacloprid pesticides with a smartphone, Biosensors and Bioelectronics, 75,
88-95, (2016).
[44] S. Serguei, Low-Temperature microassembly methods and integration techniques
for biomedical applications, in: wireless medical
systems and algorithms, CRC Press, 2016, pp. 21-42.
[45] L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, S.S. Yee, Quantitative
interpretation of the response of surface plasmon resonance sensors to adsorbed
films, Langmuir, 14, 5636-5648, (1998).
[46] M.-Y. Pan, E.-H. Lin, L. Wang, P.-K. Wei, Spectral and mode properties of
surface plasmon polariton waveguides studied by near-field excitation and
leakage-mode radiation measurement, Nanoscale Research Letters, 9, 430,
(2014).
[47] B. Steinberger, A. Hohenau, H. Ditlbacher, A.L. Stepanov, A. Drezet, F.R.
Aussenegg, A. Leitner, J.R. Krenn, Dielectric stripes on gold as surface plasmon
waveguides, Applied Physics Letters, 88, 094104, (2006).
[48] R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, A hybrid plasmonic
waveguide for subwavelength confinement and long-range propagation, Nat
Photon, 2, 496-500, (2008).
[49] P. Bharadwaj, A. Bouhelier, L. Novotny, Electrical excitation of surface plasmons,
Physical Review Letters, 106, 226802, (2011).
[50] Z. Han, S. He, Multimode interference effect in plasmonic subwavelength
waveguides and an ultra-compact power splitter, Opt. Commun., 278, 199-203,
(2007).
[51] A. Pitilakis, E.E. Kriezis, Longitudinal 2 x 2 switching configurations based on
thermo-optically addressed dielectric-loaded plasmonic waveguides, Journal of
Lightwave Technology, 29, 2636-2646, (2011).
[52] M. Rajarajan, C. Themistos, B.M.A. Rahman, K.T.V. Grattan, Characterization
of metal-clad TE/TM mode splitters using the finite element method, Journal of
Lightwave Technology, 15, 2264-2269, (1997).
[53] R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, Numerical techniques for
modeling guided-wave photonic devices, IEEE Journal of Selected Topics in
Quantum Electronics, 6, 150-162, (2000).
[54] T. Holmgaard, Z. Chen, S.I. Bozhevolnyi, L. Markey, A. Dereux, Design and
characterization of dielectric-loaded plasmonic directional couplers, Journal of
Lightwave Technology, 27, 5521-5528, (2009).
[55] M.-Y. Pan, E.-H. Lin, L. Wang, P.-K. Wei, Enhancing surface plasmon polariton
propagation by two-layer dielectric-loaded waveguides on silver surface,
Applied Physics A, 115, 93-98, (2014).
[56] P. Berini, Long-range surface plasmon polaritons, Adv. Opt. Photon., 1, 484-588,
(2009).
[57] J. Jiang, C.L. Callender, S. Jacob, J.P. Noad, S. Chen, J. Ballato, J.D.W. Smith,
Long-range surface plasmon polariton waveguides embedded in fluorinated
polymer, Appl. Opt., 47, 3892-3900, (2008).
[58] R. Buckley, P. Berini, Figures of merit for 2D surface plasmon waveguides and
application to metal stripes, Opt. Express, 15, 12174-12182, (2007).
[59] P. Dawson, B.A.F. Puygranier, J.P. Goudonnet, Surface plasmon polariton
propagation length: A direct comparison using photon scanning tunneling
microscopy and attenuated total reflection, Physical Review B, 63, 205410,
(2001).
[60] M.-Y. Pan, K.-L. Lee, W.-S. Tsai, L. Wang, P.-K. Wei, Determination of the
effective index and thickness of biomolecular layer by Fano resonances in gold
nanogrid array, Opt. Express, 23, 21596-21606, (2015).
[61] C.R. Lavers, J.S. Wilkinson, A waveguide-coupled surface-plasmon sensor for an
aqueous environment, Sensors and Actuators B: Chemical, 22, 75-81, (1994).
[62] E.C.Y. Li-Chan, The applications of Raman spectroscopy in food science, Trends
in Food Science & Technology, 7, 361-370, (1996).
[63] E.S. Forzani, H. Zhang, W. Chen, N. Tao, Detection of heavy metal ions in
drinking water using a high-resolution differential surface plasmon resonance
sensor, Environmental Science & Technology, 39, 1257-1262, (2004).
[64] J. Zheng, L. He, Surface-enhanced raman spectroscopy for the chemical analysis
of food, Comprehensive Reviews in Food Science and Food Safety, 13, 317-328,
(2014).
[65] J.M. McDonnell, Surface plasmon resonance: towards an understanding of the
mechanisms of biological molecular recognition, Current Opinion in Chemical
Biology, 5, 572-577, (2001).
[66] Z. Altintas, Y. Uludag, Y. Gurbuz, I. Tothill, Development of surface chemistry
for surface plasmon resonance based sensors for the detection of proteins and
DNA molecules, Analytica Chimica Acta, 712, 138-144, (2012).
[67] H. Im, J.N. Sutherland, J.A. Maynard, S.-H. Oh, Nanohole-based surface
plasmon resonance instruments with improved spectral resolution quantify a
broad range of antibody-ligand binding kinetics, Analytical Chemistry, 84,
1941-1947, (2012).
[68] P. Zijlstra, P.M.R. Paulo, M. Orrit, Optical detection of single non-absorbing
molecules using the surface plasmon resonance of a gold nanorod, Nat Nano, 7,
379-382, (2012).
[69] S. Haemers, G.J.M. Koper, M.C. van der Leeden, G. Frens, An alternative
method to quantify surface plasmon resonance measurements of adsorption on
flat surfaces, Langmuir, 18, 2069-2074, (2002).
[70] N. Granqvist, H. Liang, T. Laurila, J. Sadowski, M. Yliperttula, T. Viitala,
Characterizing ultrathin and thick organic layers by surface plasmon resonance
three-wavelength and waveguide mode Analysis, Langmuir, 29, 8561-8571,
(2013).
[71] T. Del Rosso, J.E.H. Sánchez, R.D.S. Carvalho, O. Pandoli, M. Cremona,
Accurate and simultaneous measurement of thickness and refractive index of
thermally evaporated thin organic films by surface plasmon resonance
spectroscopy, Optics Express, 22, 18914-18923, (2014).
[72] J. Salvi, D. Barchiesi, Measurement of thicknesses and optical properties of thin
films from surface plasmon resonance (SPR), Applied Physics A, 115, 245-255,
(2014).
[73] K.-L. Lee, J.-B. Huang, J.-W. Chang, S.-H. Wu, P.-K. Wei, Ultrasensitive
biosensors using enhanced Fano resonances in capped gold nanoslit Arrays, Sci.
Rep., 5, (2015).
[74] I.H. Malitson, Interspecimen comparison of the refractive index of fused silica, J.
Opt. Soc. Am., 55, 1205-1208, (1965)
[75] Y.-H. Yang, M. Haile, Y.T. Park, F.A. Malek, J.C. Grunlan, Super gas barrier of
all-polymer multilayer thin films, Macromolecules, 44, 1450-1459, (2011).
[76] R. Murga, P.S. Stewart, D. Daly, Quantitative analysis of biofilm thickness
variability, Biotechnology and Bioengineering, 45, 503-510, (1995).
[77] P. Ying, Y. Yu, G. Jin, Z. Tao, Competitive protein adsorption studied with atomic
force microscopy and imaging ellipsometry, Colloids and Surfaces B:
Biointerfaces, 32, 1-10, (2003).
[78] G.A.J. Besselink, R.P.H. Kooyman, P.J.H.J. van Os, G.H.M. Engbers, R.B.M.
Schasfoort, Signal amplification on planar and gel-type sensor surfaces in
surface plasmon resonance-based detection of prostate-specific antigen,
Analytical Biochemistry, 333, 165-173, (2004).
[79] Z. Zhang, Z. Chen, S. Wang, F. Cheng, L. Chen, Iodine-mediated etching of gold
nanorods for plasmonic ELISA based on colorimetric detection of alkaline
phosphatase, ACS Applied Materials & Interfaces, 7, 27639-27645, (2015).
[80] M. Cretich, G.G. Daaboul, L. Sola, M.S. Ünlü, M. Chiari, Digital detection of
biomarkers assisted by nanoparticles: application to diagnostics, Trends in
Biotechnology, 33, 343-351, (2015).
[81] D.R. Walt, Optical methods for single molecule detection and analysis,
Analytical Chemistry, 85, 1258-1263, (2013).
[82] A.R. Halpern, J.B. Wood, Y. Wang, R.M. Corn, Single-nanoparticle Near-Infrared
surface plasmon resonance microscopy for real-time measurements of DNA
hybridization adsorption, ACS Nano, 8, 1022-1030, (2014).
[83] D.-K. Kang, M.M. Ali, K. Zhang, S.S. Huang, E. Peterson, M.A. Digman, E.
Gratton, W. Zhao, Rapid detection of single bacteria in unprocessed blood using
Integrated Comprehensive Droplet Digital Detection, Nat Commun, 5, (2014).
[84] F. Piraino, F. Volpetti, C. Watson, S.J. Maerkl, A digital–analog microfluidic
platform for patient-centric multiplexed biomarker diagnostics of ultralow
volume samples, Acs Nano, 10, 1699-1710, (2016).
[85] F. Vasefi, M. Najiminaini, B. Kaminska, J.J.L. Carson, Effect of surface plasmon
cross-talk on optical properties of closely packed nano-hole arrays, Opt. Express,
19, 25773-25779, (2011).
[86] C.L. Wong, M. Olivo, Surface plasmon resonance imaging sensors: A Review,
Plasmonics, 9, 809-824, (2014).
[87] T.-Y. Chang, M. Huang, A.A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M.F. Yanik, H.
Altug, Large-scale plasmonic microarrays for label-free high-throughput
screening, Lab on a Chip, 11, 3596-3602, (2011).
[88] N.C. Lindquist, A. Lesuffleur, H. Im, S.-H. Oh, Sub-micron resolution surface
plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation, Lab on a Chip, 9, 382-387,
(2009).
[89] K.-L. Lee, C.-W. Lee, P.-K. Wei, Sensitive detection of nanoparticles using
metallic nanoslit arrays, Applied Physics Letters, 90, 233119, (2007).
[90] D.Y. Lei, J. Li, A.I. Fernández-Domínguez, H.C. Ong, S.A. Maier, Geometry
dependence of surface plasmon polariton lifetimes in nanohole Arrays, Acs
Nano, 4, 432-438, (2010).
[91] D.S. Kim, S.C. Hohng, V. Malyarchuk, Y.C. Yoon, Y.H. Ahn, K.J. Yee, J.W. Park,
J. Kim, Q.H. Park, C. Lienau, Microscopic origin of surface-plasmon radiation
in plasmonic band-gap nanostructures, Physical Review Letters, 91, 143901,
(2003).
[92] S. Asiaei, P. Nieva, M.M. Vijayan, Fast kinetics of thiolic self-assembled
monolayer adsorption on gold: modeling and confirmation by protein binding,
The Journal of Physical Chemistry B, 118, 13697-13703, (2014).
[93] E. Cho, S. Choi, J. Shim, T. Kim, R. Shin, J. Lee, J. Kim, H.-I. Jung, S. Kang,
High-throughput detection of human salivary cortisol using a multiple optical
probe based scanning system with micro-optics and nanograting coupled
label-free microarray, Sensors and Actuators B: Chemical, 233, 520-527,
(2016).
[94] S.M. Tabakman, L. Lau, J.T. Robinson, J. Price, S.P. Sherlock, H. Wang, B.
Zhang, Z. Chen, S. Tangsombatvisit, J.A. Jarrell, P.J. Utz, H. Dai, Plasmonic
substrates for multiplexed protein microarrays with femtomolar sensitivity and
broad dynamic range, Nat Commun, 2, 466, (2011).
[95] R.M. Briggs, J. Grandidier, S.P. Burgos, E. Feigenbaum, H.A. Atwater, Efficient
coupling between dielectric-Loaded plasmonic and silicon photonic waveguides,
Nano Letters, 10, 4851-4857, (2010).
[96] H. Wang, Z. Liu, S. Kim, C. Koo, Y. Cho, D.-Y. Jang, Y.-J. Kim, A. Han,
Microfluidic acoustophoretic force based low-concentration oil separation and
detection from the environment, Lab on a Chip, 14, 947-956, (2014).
[97] S. Li, J.C. Day, J.J. Park, C.P. Cadou, R. Ghodssi, A fast-response microfluidic
gas concentrating device for environmental sensing, Sensors and Actuators A:
Physical, 136, 69-79, (2007).
[98] H. Bridle, B. Miller, M.P.Y. Desmulliez, Application of microfluidics in
waterborne pathogen monitoring: A review, Water Research, 55, 256-271,
(2014).
[99] K. Bremer, B. Roth, Fibre optic surface plasmon resonance sensor system
designed for smartphones, Opt. Express, 23, 17179-17184, (2015).
[100] H. Guner, E. Ozgur, G. Kokturk, M. Celik, E. Esen, A.E. Topal, S. Ayas, Y.
Uludag, C. Elbuken, A. Dana, A smartphone based surface plasmon resonance
imaging (SPRi) platform for on-site biodetection, Sensors and Actuators B:
Chemical, 239, 571-577, (2017).
[101] Y. Wang, X. Liu, P. Chen, N.T. Tran, J. Zhang, W.S. Chia, S. Boujday, B.
Liedberg, Smartphone spectrometer for colorimetric biosensing, Analyst, 141,
3233-3238, (2016).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *