帳號:guest(3.12.123.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張瑋麟
作者(外文):Jang, Wei Lin
論文名稱(中文):利用二維金屬孔洞陣列產生三倍頻之研究
論文名稱(外文):Investigation of Third Harmonic Generations using Two-Dimensional Metallic Hole Arrays
指導教授(中文):黃承彬
指導教授(外文):Huang, Chen-Bin
口試委員(中文):陳國平
黃承彬
黃哲勳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:101066701
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:45
中文關鍵詞:非線性電漿子三倍頻金屬孔洞陣列
外文關鍵詞:nonlinear plasmonicthird harmonic generationmetallic hole arrays
相關次數:
  • 推薦推薦:0
  • 點閱點閱:125
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
本論文在於研究如何利用二維金屬孔洞陣列產生三倍頻,電磁波與金屬交互作用後會產生奈米電漿子 (Plasmonic),我們希冀能利用奈米電漿子增強金屬本身的非線性效應;因此我們利用數學推論最佳的結構,使用有限時域差分法進行模擬分析並驗證其結果,探討不同結構下奈米電漿子產生的情況以及三倍頻的產生結果。
製程上,我們利用熱蒸鍍的方式進行鍍膜,使用聚焦離子束製作結構;我們使用中心波長1560 nm 且脈衝寬約為60飛秒的脈衝雷射做為激發光源,其重複率為80MHz,平均功率約為110mW,我們將其聚焦在樣品中心,並利用自行架設的水平上成像系統,觀測非線性訊號的產生,利用量測到的數據,進行強度相依性的比較,因此我們可以很明確得知產生了三倍頻。
In this work, we study how to use two-dimensional metallic hole arrays for three harmonic generation. After he interaction of electromagnetic waves with metal and dielectric, plasmonic would be produced. We hope we can take advantage of plasmonic to enhance nonlinear effect of the metal. Therefore we do simulation analysis by using the FDTD method and verify the results.
In the experiment, we use thermal evaporation to coat the gold film upon to the substrate. We make the structure by using focused ion beam. A pulse laser is used at 1560 nm wavelength and roughly 60 fs pulse duration. Its repetition rate is 80MHz and its average power is 110 mW. We are using the self-set up imaging system to measure nonlinear signal and confirm the one is third harmonic generation by power relation.
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VI
表目錄 VII
第一章 緒論 1
第二章 非線性奈米電漿子理論與模擬分析 3
2.1理論與背景 4
2.1.1金屬材料的光學反應 4
2.1.2非線性光學 6
2.1.3非線性極化率 10
2.1.4表面電漿子 12
2.1.5週期性結構耦合表面電漿子 16
2.2週期性結構數值模擬 18
2.2.1運算環境 18
2.2.2週期性結構的設計 19
2.2.3二維金屬孔洞陣列產生非線性 20
第三章 元件製備與奈米電漿子實驗 26
3.1週期性結構元件之製成 27
3.2實驗架構 28
3.3實驗量測 29
第四章 結論與未來展望 36
參考文獻 37
附錄 41
1. Wood, R.W., On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Proceedings of the Physical Society of London, 1902. 18(1): p. 269.
2. Hessel, A. and A.A. Oliner, A New Theory of Wood?s Anomalies on Optical Gratings. Applied Optics, 1965. 4(10): p. 1275-1297.
3. Fano, U., Some Theoretical Considerations on Anomalous Diffraction Gratings. Physical Review, 1936. 50(6): p. 573-573.
4. Fano, U., On the Anomalous Diffraction Gratings. II. Physical Review, 1937. 51(4): p. 288-288.
5. Fano, U., On the theory of the intensity anomalies of diffraction. Annalen Der Physik, 1938. 32(5): p. 393-443.
6. Fano, U., The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). Journal of the Optical Society of America, 1941. 31(3): p. 213.
7. Ritchie, R.H., Plasma Losses by Fast Electrons in Thin Films. Physical Review, 1957. 106(5): p. 874-881.
8. Atwater, H.A., The promise of plasmonics. Scientific American, 2007. 296(4): p. 56-63.
9. Curto, A.G., et al., Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna. Science, 2010. 329(5994): p. 930-933.
10. Kinkhabwala, A., et al., Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photon, 2009. 3(11): p. 654-657.
11. Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics Reports, 2005. 408(3–4): p. 131-314.
12. Maier, S.A., P.G. Kik, and H.A. Atwater, Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Applied Physics Letters, 2002. 81(9): p. 1714-1716.
13. Maier, S.A., P.G. Kik, and H.A. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides. Physical Review B, 2003. 67(20): p. 205402.
14. Maier, S.A., et al., Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Applied Physics Letters, 2005. 86(7): p. -.
15. Woolf, D., M. Loncar, and F. Capasso, The forces from coupled surface plasmon polaritons in planar waveguides. Optics Express, 2009. 17(22): p. 19996-20011.
16. Volpe, G., et al., Surface Plasmon Radiation Forces. Physical Review Letters, 2006. 96(23): p. 238101.
17. Huang, L. and O.J.F. Martin, Reversal of the optical force in a plasmonic trap. Optics Letters, 2008. 33(24): p. 3001-3003.
18. Righini, M., et al., Surface Plasmon Optical Tweezers: Tunable Optical Manipulation in the Femtonewton Range. Physical Review Letters, 2008. 100(18): p. 186804.
19. Juan, M.L., M. Righini, and R. Quidant, Plasmon nano-optical tweezers. Nat Photon, 2011. 5(6): p. 349-356.
20. Schumacher, T., et al., Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle. Nat Commun, 2011. 2: p. 333.
21. Kauranen, M. and A.V. Zayats, Nonlinear plasmonics. Nat Photon, 2012. 6(11): p. 737-748.
22. Schuller, J.A., et al., Plasmonics for extreme light concentration and manipulation. Nat Mater, 2010. 9(3): p. 193-204.
23. Jha, S.S., Nonlinear Optical Reflection from a Metal Surface. Physical Review Letters, 1965. 15(9): p. 412-414.
24. Bloembergen, N., W.K. Burns, and M. Matsuoka, Reflected third harmonic generated by picosecond laser pulses. Optics Communications, 1969. 1(4): p. 195-198.
25. Crozier, K.B., et al., Optical antennas: Resonators for local field enhancement. Journal of Applied Physics, 2003. 94(7): p. 4632-4642.
26. Novotny, L. and N. van Hulst, Antennas for light. Nat Photon, 2011. 5(2): p. 83-90.
27. Renger, J., et al., Free-Space Excitation of Propagating Surface Plasmon Polaritons by Nonlinear Four-Wave Mixing. Physical Review Letters, 2009. 103(26): p. 266802.
28. Zhang, Y., et al., Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano Letters, 2011. 11(12): p. 5519-5523.
29. Pu, Y., et al., Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation. Physical Review Letters, 2010. 104(20): p. 207402.
30. Cai, W., A.P. Vasudev, and M.L. Brongersma, Electrically Controlled Nonlinear Generation of Light with Plasmonics. Science, 2011. 333(6050): p. 1720-1723.
31. Lesuffleur, A., et al., Angle-dependent SHG enhancement from nanoscale doublehole arrays in a gold film. Journal of Physics: Conference Series, 2007. 61(1): p. 693.
32. Xu, T., et al., Second-harmonic emission from sub-wavelength apertures: Effects ofaperture symmetry and lattice arrangement. Optics Express, 2007. 15(21): p. 13894-13906.
33. Nahata, A., et al., Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Optics Letters, 2003. 28(6): p. 423-425.
34. Konstantinova, T.V., et al., A nanohole in a thin metal film as an efficient nonlinear optical element. Journal of Experimental and Theoretical Physics, 2013. 117(1): p. 21-31.
35. Xu, T., X. Jiao, and S. Blair, Third-harmonic generation from arrays of sub-wavelength metal apertures. Optics Express, 2009. 17(26): p. 23582-23588.
36. Li, G.X., et al., Spectral analysis of enhanced third harmonic generation from plasmonic excitations. Applied Physics Letters, 2011. 98(26): p. -.
37. Hanke, T., et al., Tailoring Spatiotemporal Light Confinement in Single Plasmonic Nanoantennas. Nano Letters, 2012. 12(2): p. 992-996.
38. Utikal, T., et al., All-Optical Control of the Ultrafast Dynamics of a Hybrid Plasmonic System. Physical Review Letters, 2010. 104(11): p. 113903.
39. Park, I.-Y., et al., Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat Photon, 2011. 5(11): p. 677-681.
40. Kim, S., et al., High-harmonic generation by resonant plasmon field enhancement. Nature, 2008. 453(7196): p. 757-760.
41. Kohlgraf-Owens, D.C. and P.G. Kik, Numerical study of surface plasmon enhanced nonlinear absorption and refraction. Optics Express, 2008. 16(14): p. 10823-10834.
42. Abb, M., et al., All-Optical Control of a Single Plasmonic Nanoantenna–ITO Hybrid. Nano Letters, 2011. 11(6): p. 2457-2463.
43. MacDonald, K.F., et al., Ultrafast active plasmonics. Nat Photon, 2009. 3(1): p. 55-58.
44. Krasavin, A.V., et al., Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry. Optics Express, 2011. 19(25): p. 25222-25229.
45. Ren, M., et al., Nanostructured Plasmonic Medium for Terahertz Bandwidth All-Optical Switching. Advanced Materials, 2011. 23(46): p. 5540-5544.
46. Wurtz, G.A., et al., Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat Nano, 2011. 6(2): p. 107-111.
47. Davoyan, A.R., I.V. Shadrivov, and Y.S. Kivshar, Self-focusing and spatial plasmon-polariton solitons. Optics Express, 2009. 17(24): p. 21732-21737.
48. ALMOG, I. and V. MS-Bulovic, The Lorentz Oscillator and its Applications. Massachusetts Institute of Technology, 2011.
49. Taflove, A., Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems. Electromagnetic Compatibility, IEEE Transactions on, 1980. EMC-22(3): p. 191-202.
50. Lassiter, J.B., et al., Third-Harmonic Generation Enhancement by Film-Coupled Plasmonic Stripe Resonators. ACS Photonics, 2014. 1(11): p. 1212-1217.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *