帳號:guest(13.58.82.214)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):顏士哲
作者(外文):Yen, Shih-Che
論文名稱(中文):利用快速熱熔磊晶法製備鍺錫合金結構於矽基板上
論文名稱(外文):Fabrication of GeSn Structures on Silicon Substrate by Rapid-Melt-Growth
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):吳孟奇
謝光前
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:101066540
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:77
中文關鍵詞:鍺錫合金快速熱熔磊晶法
相關次數:
  • 推薦推薦:0
  • 點閱點閱:212
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
四族材料近年被熱烈討論及研究,因為其能被有效運用在電子及光電元件上面,且這種材料具有最大的優勢為可以有效方便的整合在矽基板上,這對IC產業之後的發展是非常關鍵的。然而四族材料中Ge是非直接能隙的材料,使得這種材料的發光效率非常低,因此我們必須研究Ge的能帶工程,其中一種方法為鍺錫合金,藉由Sn的加入改變Ge的能帶結構,其直接能隙會下降的比非直接能隙快,理論計算約10%的鍺錫合金能變為直接能隙材料。但是錫在鍺內的固體溶度低於1%且由於錫低熔點的特性在高溫下容易有析出的現象,所以高濃度鍺錫合金通常需要低溫非平衡性的分子束磊晶(MBE)法,但是仍然無法避免產生較多缺陷。
我們試著以快速熱熔再磊晶(RMG)的方法來製作高濃度且單晶的鍺錫合金,並針對此製程作材料上的分析,包括後續高溫退火的限制及其析出的情形。但是由於高濃度鍺錫合金的範圍分佈非常集中,我們藉由特殊結構化的設計,在一般直線型的RMG條狀加上光柵的結構,使其在磊晶的過程中有些許鍺錫合金被保留在光柵結構內,進而大幅提升其高濃度鍺錫合金能發光的區域,最後利用PL量測其發光結果。
摘 要 I
Abstract II
致 謝 IV
目 錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
1.3 論文架構 6
第二章 鍺能帶結構工程研究與討論 7
2.1 高濃度n-type佈值 7
2.2 雙軸拉伸應力 9
2.3 鍺錫合金與相關論文回顧 12
第三章 快速熱熔磊晶法沉積鍺錫合金於矽基板上 17
3.1 快速熱熔磊晶法 17
3.2 快速熱熔再磊晶法沉積鍺錫合金於矽基板上 23
3.3 快速熱熔再磊晶鍺錫合金結構化元件設計及製程討論 27
3.3.1 快速熱熔再磊晶鍺錫合金之結構化設計 27
3.3.2 雙微影蝕刻(litho-etch-litho-etch)雙圖案微影技術 29
第四章 元件製作與流程 31
4.1 元件製作流程圖表 31
4.2 元件製作流程細節 34
第五章 元件量測結果及討論 48
5.1 直線型RMG元件材料分析 48
5.1.1 直線型RMG晶格及材料分析以及Raman分析 48
5.1.2 觀察濕蝕刻去除覆蓋Oxide後錫的分佈情形 53
5.1.3 觀察鍺錫合金後續退火溫度限制觀察 54
5.1.4 2D結構對RMG後錫分佈的影響 57
5.2 結構化RMG原件材料分析 58
5.2.1 縱向結構化設計RMG鍺錫合金晶格及材料分析 58
5.2.2 觀察濕蝕刻去除覆蓋Oxide後錫的分佈情形 61
5.2.3 光激發光(PL)量測分析 63
第六章 結論與未來展望 66
6.1 結論 66
6.2 未來展望 67
參考文獻 69
附錄一、元件製作流程表 72
[1] X. Sun, “Ge-on-Si Light-Emitting Materials and Devices for Silicon Photonics,” B.S. Physics, Peking University, (2004)
[2] M. El Kurdi, T. Kociniewski, “Enhanced photoluminescence of heavily n-doped germanium, ” Applied Physics Letters 94 (19),191107-191103 (2009).
[3] J. Liu, X. Sun, D. Pan, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[4] S.-L. Cheng, J. Lu, “Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[5] X. Sun, J. F. Liu, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Applied Physics Letters, vol. 95, no. 1, Article ID 011911, 2009.
[6] X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Geon-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
[7] J. Liu, X. Sun, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[8] M. El Kurdi, H. Bertin, “Control of direct band gap emission of bulk germanium by mechanical tensile strain, ” A. Bosseboeuf and P. Boucaud, Applied Physics Letters 96 (4), 041909-041903 (2010).
[9] V. R. D’Costa, C. S. Cook, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73(12), 125207 (2006).
[10] J. Mathews, R. T. Beeler, J. Tolle, C. Xu, R. Roucka, J. Kouvetakis and J. Menendez, “Direct gap photoluminescence with tunable emission wavelength in Ge1-ySny alloys on silicon” ,Applied Physics Letters 97 (22), 221912-221913 (2010).
[11] Hai Lin, “Growth and characterization of GeSn and SiGeSn alloys for
optical interconnects,” Stanford University (2012).
[12] J. Werner, M. Oehme, A. Schirmer, E. Kasper, and J. Schulze, “Molecular beam epitaxy grown GeSn p-i-n photodetectors integrated on Si,” Thin Solid Films 520(8), 3361–3364 (2012).
[13] S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y.Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[14] Birendra Dutt, Senior Member,“Theoretical Analysis of GeSn Alloys as a Gain Medium for a Si-Compatible Laser” ,IEEE, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2013
[15] David S. Sukhdeo, Hai Lin. “Approaches for a Viable Germanium Laser:Tensile Strain, GeSn Alloys, and n-Type Doping” 2013,IEEE
[16] T. Shotaro, S. Akira, “Growth and structure evaluation of strain-relaxed Ge1−xSnx buffer layers grown on various types of substrates, ” Semiconductor Science and Technology 22 (1), S231 (2007).
[17] B. Vincent, Y. Shimura, S. Takeuchi, “Characterization of GeSn materials for future Ge pMOSFETs source/drain stressors, ” Microelectronic Engineering 88 (4), 342-346 (2011).
[18] Yaocheng Liu, Michael D. Deal, “High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates,” APPLIED PHYSICS LETTERS, vol. 84, (2004)
[19] 吳庭孝,“利用快速熱熔再結晶法製作金半金結構之面收型鍺紅外光光子偵測器於矽基板上”,國立清華大學光電工程研究所(民國101年)
[20] Shu-Lu Chen , “Design and process for three-dimensional heterogeneous integration” Stanford University , (2010)
[21] Masashi Kurosawa, Yuki Tojo, “Single-crystalline laterally graded GeSn on insulator structures by segregation controlled rapid-melting growth” Appl. Phys. Lett. 101, 091905 (2012)
[22] 洪偉誠,“利用快速熱熔磊晶鍺異質成長砷化鎵材料於矽基板”, 國立清華大學光電工程研究所(民國101年)
[23] Ryo Matsumura, Mohammad Anisuzzaman, “Laterally-Graded Doping into Ge-on-Insulator by Combination of Ion-Implantation and Rapid-Melting Growth” ECS Solid State Letters, 2 (7) P58-P60 (2013)
[24] “Scheil equation.” Wikipedia. Retrieved December 10, 2014, from: http://en.wikipedia.org/wiki/Scheil_equation
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *