帳號:guest(18.218.13.27)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李明晉
作者(外文):LI, MING-CHIN
論文名稱(中文):寬能隙P型有機射極之高效率混合型矽異質接面太陽能電池
論文名稱(外文):Wide-Bandgap P-Type Organic Emitters for High Efficiency Hybrid Silicon Heterojunction Photovoltaics
指導教授(中文):洪勝富
孟心飛
指導教授(外文):Horng, Sheng-Fu
Meng, Hsin-Fei
口試委員(中文):洪勝富
孟心飛
余沛慈
口試委員(外文):Sheng-Fu Horng
Hsin-Fei Meng
Peichen Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:101066534
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:108
中文關鍵詞:共溶劑製程提升開路電壓提升填充因子螢光高分子空間上梯度式摻雜透過垂直性的相分離複合層
外文關鍵詞:co-solution methodenhanced Vocenhanced FFfluorescent polymersspatially graded doping via vertical phase separationrecombination layer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:423
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
矽基太陽電池有著高效率、豐富來源等優點;而有機太陽電池可以利用低溫、低成本之溶液製程以及擁有捲對捲的拓展性之優勢,結合以上兩種系統的太陽電池,即是有機無機混成太陽電池。在無機的矽基板以及有機的共軛高分子材料基礎下,不但可以有效簡化製程手法,進而能大幅降低整個太陽電池的製程成本,但依舊可維持高效率之特點。

在本論文中,我們開發出一種利用共溶劑混藥方式,去配製具有強大拉電子能力的F4TCNQ摻雜於寬能帶的螢光高分子PFO中,此P型的有機層被旋塗在矽奈米線跟TAPC之介面,用以當做載子複合層且可拉低螢光高分子的費米能階,並且我們透過紫外光光電子能譜儀以及X-ray光電子能譜儀的量測,可以觀察到此P型的有機層中的F4TCNQ分布,是透過垂直性相分離的方式,呈現一種空間上梯度式摻雜,導致越靠近矽奈米柱處摻雜的F4TCNQ就越多,也就越呈現P型,此現象不但造成矽基板與P型有基層接面處的能帶彎曲,也使得電洞更容易因能障降低而傳遞到電極,因而提升開路電壓與填充因子,其元件轉換效率可達 13.6%。

Silicon solar cells have the advantages of high efficiency and abundant resources on earth.And organic solar cells can be fabricated in low temperature,low-cost solution processes and also has roll-to-roll scalability.Combining the advantages of these two material systems,hybrid solar cells based on organic conjugated polymers and inorganic silicon is a promising alternative to simplify the fabrication processes and reduce the cost,while maintaining a high PCE.

In this study,we introduce a co-solvent method to dope a wide band gap poly(9,9-dioctyfluorenyl-2,7-diyl) (PFO) fluorescent polymers with a very efficient electron acceptor tetrafluorotetracyanoquinodimethane(F4TCNQ).The p-doping layer was deposited onto and between 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane(TAPC)layer and SiNWs by the solution processing method in order to form a recombination layer and lower Fermi level of fluorescent polymers.

Furthermore,Ultraviolet Photoelectron spectroscopy (UPS) and X-ray Photoemission spectroscopy (XPS) confirms that F4TCNQ is spatially graded doping via vertical phase separation in this p-type doping layer.The nearer to SiNWs,the more F4TCNQ is doped, which let p-type layers become more p-type.

The power conversion efficiency reaches a record 13.6%, which is largely ascribed to the band bending between n-type silicon and p-doping layer interface.Consequently,holes can conduct to electrodes more easily by lowering energy barriers,which boost the open-circuit voltage and fill factor.
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI

Chapter 1 緒論 1

1-1 前言 1
1-2 有機與無機混合式太陽電池發展現況 1
1-3 研究動機 3
1-4 論文架構 3

Chapter 2 太陽能電池基礎理論 4

2-1 太陽電池工作原理與基本架構 4
2-2 太陽能電池基本參數 9

Chapter 3 元件製程、量測、材料介紹 15

3-1 有機無機混成太陽電池元件製程 15
3-1-1 矽奈米柱基板製作 15
3-1-2 Hybrid solar cell元件製作流程 17
3-2 太陽能電池之光電性量測 30
3-3有機材料介紹 31

Chapter 4 實驗設計與結果分析 33

4-1 實驗簡介與構想 33
4-1-1 文獻回顧 34
4-1-2 有機材料 F4-TCNQ 之簡介 36
4-1節總結 37
4-2 P型摻雜有機材料測試 38
4-2-1 P型摻雜TAPC (尚未用共溶劑) 38
4-2-2 P型摻雜有機材料 41
4-2節總結 57
4-3 摻雜濃度測試 58
4-3-1 P型摻雜PFO (共溶劑) 58
4-3-2 P型摻雜Green-B (共溶劑) 65
4-3節總結 69
4-4 p-PFO與TAPC 介面之探討 69
4-4節總結 80
4-5 p-PFO在矽奈米柱上的形態與膜厚對效率之影響 81
4-5-1 每個階段的有機層在矽奈米柱上的形貌 81
4-5-2 不同濃度的PFO但相同摻雜F4TCNQ比例在平矽基板上的膜厚量測 83
4-5-3 不同濃度的PFO對於元件效率之影響 84
4-5節總結 90
4-6 紫外光电子能谱(UPS) 以及 X射線光電子能譜(XPS)分析 90
4-6-1 UPS量測結果以及能帶圖 91
4-6-2 XPS量測結果以及縱深分析 94
4-6節總結 96
4-7 共溶劑混藥測試 96
4-7節總結 105

Chapter 5 結論與未來展望 106



[1] (a)戴寶通、鄭晃忠,太陽能電池技術手冊.1 ed.; 台灣電子材料與元件協會: 2 008; p 500; (b)林明獻,太陽電池技術入門(第三版). 全華圖書: 台灣, 2012; (c)黃惠良,太陽電池.1 ed.; 五南圖書出版股份有限公司: 台灣, 2008.

[2]陳金鑫,黃孝文,―OLED夢幻顯示器–OLED材料與元件", 五南圖書.

[3] W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. Milliron, A. P. Alivisatos, K. W.J.

[4] J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys.Lett, 1996, 68, 3120.

[5] Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M. R.Anderson, O. Inganäs, Phys. Rev. B, 2000, 61, 12957.

[6] T. J. Savenije, J. M. Warman, A.Goossens, Chem. Phys. Lett, 1998, 287, 148.

[7] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U.Scherf, E. Harth, A. Gügel, K. Müllen, Phys. Rev. B, 1999, 59,15346

[8] Jaehyung Hwang and Antoine Kahn , Electrical doping of poly„9,9-dioctylfluorenyl-2,7-diyl… with tetrafluorotetracyanoquinodimethane by solution method . JOURNAL OF APPLIED PHYSICS 97, 103705 (2005)

[9] Keng-Hoong Yim, Gregory L. Whiting, Craig E. Murphy, Jonathan J. M. Halls,Jeremy H. Burroughes, Richard H. Friend, and Ji-Seon Kim, Controlling Electrical Properties of Conjugated Polymers via a Solution-Based p-Type Doping. Adv. Mater. 2008, 20, 3319–3324

[10] Yu et al, 13% Efficiency Hybrid Organic/Silicon-Nanowire Heterojunction Solar
Cell via Interface Engineering. ACSNANO, VOL. 7 ,NO. 12 , 10780–10787 , 2013

[11] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, Appl. Phys. Lett. 73, 729 (1998)

[12] M. Pfeiffer, A. Beyer, T. Fritz, and K. Leo, Appl. Phys. Lett. 73, 3202 (1998)

[13] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, J. Appl. Phys. 87, 97 (2001)

[14] W. Gao and A. Kahn, Appl. Phys. Lett. 79, 4040 (2001)

[15] W. Gao and A. Kahn, J. Appl. Phys. 94, 359 (2003)

[16]A. M. Ballantyne, L. Chen, J. Nelson, D. D. C. Bradley, Y. Astuti, A.Maurano, C. G. Shuttle, J. R. Durrant, M. Heeney, W. Duffy, I.McCulloch, Adv. Mater. 2007, 19, 4544.

[17] M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu, E. P.Woo, Adv. Mater. 1999, 11, 241.

[18] L. L. Chua, J. Zaumseil, J.-F. Chang, E. C. W. Ou, P. K. H. Ho, H.Sirringhaus, R. H. Friend, Nature 2005, 434, 194.

[19]J. Hwang, A. Kahn, J. Appl. Phys. 2005, 97, 103705.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *