|
[1] M. T. Bohr, “Interconnect Scaling - The Real Limiter to High Performance ULSI,” IEEE Int. Electron Devices Meeting 241-244 (1995). [2] K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida, S. Torii, K. Nose, M. Mizuno, H. Yukawa, M. Kinoshita, N. Suzuki, A. Gomyo, T. Ishi, D. Okamoto, K. Furue, T. Ueno, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, and J. Akedo, “On-Chip Optical Interconnect,” Proc. IEEE 97, 1186-1198 (2009). [3] J. Liu, “Monolithically Integrated Ge-on-Si Active Photonics,” Photonics 1, 162-197 (2014). [4] A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent lase,” Opt. Express 14, 9203-9210 (2006). [5] S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS Integrated Nano-Photonics Technology for 25Gbps WDM Optical Communications Applications,” IEEE Int. Electron Devices Meeting 33.8 (2012). [6] M. Jutzi, M. Berroth, G. Wohl, M. Oehme, E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth,” IEEE Photon. Technol. Lett. 17, 1510-1512 (2005). [7] D. Feng, S. Liao, P. Dong, N. Feng, H. Liang, D. Zheng, C. Kung, J. Fong, R. Shafiiha, J. Cunningham, . V. Krishnamoorthy and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett. 95, 261105 (2009). [8] H. Kanbe, M. Miyaji and T. Ito, “Ge/Si heterojunction photodiodes fabricated by low temperature wafer bonding,” Appl. Phys. Express 1, 072301 (2008). [9] F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100, 092102 (2012). [10] J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15, 11272-11277 (2007). [11] G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79, 1937-1940 (1997). [12] R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20, 11316-11320 (2012). [13] E. Kasper, M. Kittler, M. Oehme, and T. Arguirov, “Germanium tin: silicon photonics toward the mid-infrared,” Photon. Res. 1, 69-76 (2013). [14] J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011). [15] C. K. Tseng, W. T. Chen, K. H. Chen, H. D. Liu, Y. Kang, N. Na , and M. C. M. Lee, “A self-assembled microbonded germanium/silicon heterojunction photodiode for 25 Gb/s high-speed optical interconnects,” Nat. Sci. Rep. 3, 3225 (2013). [16] M. Kurosawa, Y. Tojo, R. Matsumura, T. Sadoh, and M. Miyao, “Single-crystalline laterally graded GeSn on insulator structures by segregation controlled rapid-melting growth”, Appl. Phys. Lett. 101, 091905 (2012). [17.] E. D. Palik, “Handbook of optical constants of solids,” Academic Press (1985) [18.] X. Sun, “Ge-on-Si Light-Emitting Materials and Devices for Silicon Photonics,” Diss. Peking University (2004). [19] V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B 73, 125207 (2006). [20] R. A. Soref, G. Sun and H. H. Cheng, “Franz-Keldysh electro-absorption modulation in germanium-tin alloys,” J. Appl. Phys. 111, 123113 (2012). [21] J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95, 133506 (2009). [22] D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102, 141111 (2013). [23] D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Phys. Rev. Lett. 64, 1943 (1990). [24] M. Jutzi, M. Berroth, G. Wohl, M. Oehme, E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth,” IEEE Photon. Technol. Lett. 17, 1510-1512 (2005). [25] R. W. Olesinski, G. J. Abbaschian, “The Ge−Sn (Germanium−Tin) system,” Bulletin of Alloy Phase Diagrams 5, 265 (1984) [26] H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett. 102, 251907 (2013). [27] M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101, 141110 (2012). [28] Y. Liu, M. D. Deal, and J. D. Plummer, “High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates,” Appl. Phys. Lett. 84, 2563 (2004). [29] S. L. Chen, P. B. Griffin, and J. D. Plummer, “Single-Crystal GaAs and GaSb on Insulator on Bulk Si Substrates Based on Rapid Melt Growth,” IEEE Electron Device Lett. 31, 597–599 (2010). [30] E. Scheil, “Bemerkungen zur Schichtkristallbildung,” Z. Metallkd. 34, 70 (1942). [31] F. A. Trumbore, ”Solid Solubilities of Impurity Elements in Germanium and Silicon,” Bell Syst. Tech. J. 39, 205 (1960). [32] C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective Dark Current Suppression With Asymmetric MSM Photodetectors in Group IV Semiconductors,” IEEE Photon. Technol. Lett. 15, 1585-1587 (2003). [33] J. H. Park and H. Y. Yu, “Dark current suppression in an erbium–germanium–erbium photodetector with an asymmetric electrode area,” Opt. Lett. 36, 1182-1184 (2011). [34] H. Zang, S. J. Lee, W. Y. Loh, J. Wang, K. T. Chua, M. B. Yu, B. J. Cho, G. Q. Lo, and D. L. Kwong, “Dark-Current Suppression in Metal–Germanium–Metal Photodetectors Through Dopant-Segregation in NiGe—Schottky Barrier,” IEEE Electron Device Lett. 29, 161-164 (2008). [35] M. Takenaka, K. Morii, M. Sugiyama, Y. Nakano, and S. Takagi, “Dark current reduction of Ge photodetector by GeO2 surface passivation and gas-phase doping,” Opt. Express 20, 8718-8725 (2012). [36] J. D. Hwanga and E. H. Zhang, “Effects of a a-Si:H layer on reducing the dark current of 1310 nm metal–germanium–metal photodetectors,” Thin Solid Films 519, 3819–3821 (2011). [37] F. Campabadal, V. Milian, and X. Aymerich-Hum, “Trap-Assisted Tunneling in MIS and Schottky Structures,” Phys. Stat. Sol. 79, 223 (1983). [38] V. R. D’Costa, Y. Fang, J. Mathews, R. Roucka, J. Tolle, J. Menendez, and J. Kouvetakis, “Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunications bands,” Semicond. Sci. Technol. 24, 115006 (2009). [39] M. Klingenstein, and J. Kuhl, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid-State Electron. 37, 333-340 (1994). [40] S. F. Soares, “Photoconductive Gain in a Schottky Barrier Photodiode,” J. Appl. Phys. 31, 210-216 (1992). [41] C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, “Electron drift velocity and diffusivity in germanium,” Phys. Rev. B 24, 1014 (1981). [42] J. Burm and L. F. Eastman, “Low-frequency gain in MSM photodiodes due to charge accumulation and image force lowering,” IEEE Photon. Technol. Lett. 8, 113 (1996).
|