帳號:guest(3.137.178.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):趙婉恬
作者(外文):Chao, Wan-Tien
論文名稱(中文):脈衝於色散遞增光纖傳遞達大倍率頻譜壓縮
論文名稱(外文):Large-scale Laser Spectral Compression through pulse propagation in a Dispersion-Increasing Fiber
指導教授(中文):黃承彬
指導教授(外文):Huang, Chen-Bin
口試委員(中文):彭錦龍
賴映杰
口試委員(外文):Peng, Jin-Long
Lai, Yin-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:101066528
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:41
中文關鍵詞:光孤子頻譜壓縮非線性效應
外文關鍵詞:solitonspectral compressionnonlinear effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:156
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
光脈衝頻譜壓縮可有效增加頻譜亮度,即有效提升訊雜比,因此有助於光譜學上的應用與發展。光脈衝在標準單模光纖之頻譜壓縮現象於1978年提出,並於1993年有明確的物理解釋,指出頻譜壓縮主要為自相位調變作用於負啁啾脈衝。
本論文頻譜壓縮系統為傳統絕熱系統光孤子脈衝壓縮的反向操作,並用一線性色散遞增光纖達成頻譜壓縮結果。由於在絕熱系統光孤子壓縮理論下,頻譜壓縮比受限於光纖條件,但本論文模擬分析顯示真實頻譜壓縮可以超越光纖條件限制。在實驗上,證實半高寬為112飛秒鎖模雷射脈衝頻譜壓縮比為28.6倍,並超越本實驗室光纖理想壓縮比22.5倍。
近年來,開始探討波形相關的頻譜壓縮可能性。本論文分析各種波形的頻譜壓縮可能性,模擬結果顯示正色散光纖雷射脈衝對比於雙曲正切與高斯脈衝,擁有較高頻譜壓縮比,並使用本實驗室架設之全正色散光纖雷射作為光源,於實驗上得到頻譜壓縮比高達45倍之結果。
The optical sources with high spectral brightness enhance the signal-to-noise ratio which is helpful in spectroscopic application. The spectral compression in a single mode fiber was first observed and it was later satisfactorily explained where the cause of spectral narrowing was attributed to self-phase modulation acting on a negative-chirped pulse.
Our approach for spectral compression is using a linear ramp dispersion-increasing fiber (DIF), which is reverse processes of adiabatic soliton temporal compression. However, the feasibility for spectral compression would be seemingly limited by the dispersion ramp of DIF. In our numerical analysis, it would be possible that the real spectral compression ratio exceeds the ideal fiber limitation. In experiment, we prove that a stretch-pulse mode locked fiber laser with 112fs pulse width reaches the spectral compression ratio of 28.6 which the number is beyond ideal ratio of 22.5.
Recently, the waveform-dependent spectral compression within a normal dispersive photonic crystal fiber was addressed. In our calculation, we analyze the feasibility for spectral compression over various waveform pulses and point out that all-normal dispersion (ANDi) fiber laser pulses could give higher spectral compression ratio than hyperbolic secant and Gaussian pulses. Using a home-made ANDi laser as optical source, the spectral compression ratio of 45 can be achieved experimentally.
第一章 序論
1.1 前言
1.2 研究背景與動機
第二章 脈衝光頻譜壓縮理論與模擬
2.1 光孤子脈衝特性
2.1.1 非線性效應
2.1.2 色散效應
2.1.3 光孤子的產生與特性
2.1.4 Split-Step Fourier Method
2.2 絕熱系統的光孤子頻譜壓縮
2.2.1 光孤子脈衝壓縮
2.2.2 光孤子頻譜壓縮
2.3 短脈衝色散補償原理
2.3.1 色散補償光纖
2.3.2 脈衝塑形器
2.4 脈衝波形影響下的頻譜壓縮行為
2.4.1 脈衝波形對頻譜壓縮影響
2.4.2 全正色散光纖雷射光源特性與頻譜壓縮
第三章 脈衝光頻譜壓縮實驗
3.1 短脈衝鎖模光纖雷射實驗架構與結果
3.2 短脈衝全正色散光纖雷射實驗架構與結果
3.3 結論
第四章 未來展望
[1]R. H. Stolen and C. Lin, "Self-phase-modulation in silica optical fibers," Physical Review A, vol. 17, pp. 1448-1453, 1978 1978.
[2]S. A. Planas, N. L. P. Mansur, C. H. B. Cruz, and H. L. Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers " Optics Letters, vol. 18, pp. 699-701, May 1 1993.
[3]M. Oberthaler and R. A. Hopfel, "Special narrowing of ultrashort laser-pulses by self-phase modulation in optical fibers " Applied Physics Letters, vol. 63, pp. 1017-1019, Aug 23 1993.
[4]S. Shen, C. C. Chang, H. P. Sardesai, V. Binjrajka, and A. M. Weiner, "Effects of self-phase modulation on sub-500 fs pulse transmission over dispersion compensated fiber links," Journal of Lightwave Technology, vol. 17, pp. 452-461, Mar 1999.
[5]B. R. Washburn, J. A. Buck, and S. E. Ralph, "Transform-limited spectral compression due to self-phase modulation in fibers," Optics Letters, vol. 25, pp. 445-447, Apr 1 2000.
[6]S. T. Cundiff, B. C. Collings, L. Boivin, M. C. Nuss, K. Bergman, W. H. Knox, and S. G. Evangelides, "Propagation of highly chirped pulses in fiber-optic communications systems," Journal of Lightwave Technology, vol. 17, pp. 811-816, May 1999.
[7]J. Limpert, N. Deguil-Robin, I. Manek-Honninger, F. Salin, T. Schreiber, A. Liem, E. Roser, H. Zellmer, A. Tunnermann, A. Courjaud, C. Honninger, and E. Mottay, "High-power picosecond fiber amplifier based on nonlinear spectral compression," Optics Letters, vol. 30, pp. 714-716, Apr 1 2005.
[8]J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tunnermann, "SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier," Applied Physics B-Lasers and Optics, vol. 74, pp. 191-195, Feb 2002.
[9]E. R. Andresen, J. Thogersen, and S. R. Keiding, "Spectral compression of femtosecond pulses in photonic crystal fibers," Optics Letters, vol. 30, pp. 2025-2027, Aug 1 2005.
[10]D. A. Sidorov-Biryukov, A. Fernandez, L. Zhu, A. Pugzlys, E. E. Serebryannikov, A. Baltuska, and A. M. Zheltikov, "Spectral narrowing of chirp-free light pulses in anomalously dispersive, highly nonlinear photonic-crystal fibers," Optics Express, vol. 16, pp. 2502-2507, Feb 18 2008.
[11]A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, "Spectral compression of frequency-shifting solitons in a photonic-crystal fiber," Optics Letters, vol. 34, pp. 662-664, Mar 1 2009.
[12]N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh, "Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber," Optics Express, vol. 18, pp. 11700-11706, May 24 2010.
[13]A. M. Weiner. (2009). Ultrafast Optics
[14]M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, "Supercontinuum generation in a highly birefringent microstructured fiber," Applied Physics Letters, vol. 82, pp. 2197-2199, Apr 7 2003.
[15]C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, "Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding," Optics Express, vol. 16, pp. 2520-2527, Feb 18 2008.
[16]H.-P. Chuang and C.-B. Huang, "Wavelength-tunable spectral compression in a dispersion-increasing fiber," Optics Letters, vol. 36, pp. 2848-2850, Aug 1 2011.
[17]M. C. T. Bahaa E. A. Saleh, Fundamentals of Photonics: John Wiley & Sons, Inc, 1991.
[18]A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Review of Scientific Instruments, vol. 71, pp. 1929-1960, May 2000.
[19]E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, "Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp," Optics Letters, vol. 36, pp. 707-709, Mar 1 2011.
[20]F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser & Photonics Reviews, vol. 2, pp. 58-73, Apr 2008.
[21]H.-W. Chen, "Mode-locked erbium-doped fiber laser with tunable intracavity spectral modulation," master, Institute of Photonics Technologies, National Tsing Hua University, 2012.
[22]M. J. A. M. E. Fermann, Y. Silberberg, and M. L. Stock, "Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber," Optics Letters, vol. 18, pp. 894-896, 1993.
[23]A. C. W. H. Renninger, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Physical Review A, vol. 77, p. 023813, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *