帳號:guest(3.142.133.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):谷禎達
作者(外文):Ku, Chen-Ta
論文名稱(中文):實驗上觀測決定性合成表面電漿子漩渦
論文名稱(外文):Experimental Observation of Deterministically Synthesized Surface Plasmon Vortices
指導教授(中文):黃承彬
口試委員(中文):黃哲勳
李柏璁
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:101066523
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:65
中文關鍵詞:表面電漿子光漩渦近場掃描
外文關鍵詞:Surface plasmonOptical vortexNSOM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:417
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本論文使用有限差分時域法模擬透過幾何結構以及入射圓偏振光的旋向所決定的合成表面電漿子漩渦。我們以阿基米德螺旋為雛形,設計出六種結構,它們會產生不同的表面電漿子漩渦能量分布。此外,我們的解析解相當地符合數值模擬的結果。我們的設計可以自由地改變電漿子漩渦的能量分布,而且這個技術可能在光捕捉上會有有趣的應用。
在實驗方面,我們利用熱蒸鍍與聚焦離子束來製造元件。光學測量系統是用收集式近場光學掃描顯微鏡,這個系統包含商業的近場光學掃描顯微鏡與正向入射架構以及自己製作的沒有鍍金屬的探針。藉由比較實驗與模擬的結果,我們驗證了實驗的測量結果是表面電漿波場強而不是梯度場強。
摘要 I
Abstract II
Acknowledgements III
Table of Contents V
List of Figures VII
Chapter 1 Introduction 12
Chapter 2 Basics Concept 14
2.1 Plasmonics 14
2.1.1 TE Mode 15
2.1.2 TM Mode 16
2.2 Optical Vortex 17
Chaper 3 Surface Plasmonic Vortex Devices and Simulation 19
3.1 Generation of Surface Plasmonic Wave 20
3.2 Concept of Surface Plasmonic Vortex Design 22
3.2.1 Archimedes Spiral 22
3.2.2 Nano-focusing 23
3.2.3 Surface Plasmonic Vortex 24
3.3 Simulation Method 27
3.3.1 Numerical Analysis 27
3.3.2 Analytical Analysis 28
3.4 Design Notion 31
3.5 Simulation Result 31
Chapter 4 Experiment Result 41
4.1 Device Fabrication 41
4.2 Preparation of Measurement 42
4.3 Non-coated Probe 44
4.4 Measurement Steps and Setup 45
4.5 Measurement Results 47
4.5.1 Entire PAS 47
4.5.2 3-slot PAS 50
4.5.3 5-slot PAS 52
Chapter 5 Conclusion and Outlook 55
Appendix 57
Convolution of Impulse Response and Near-field Intensity 57
Reference 63

[1] S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).
[2] J. M. Vigoureux and D. Courjon, "Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion," Applied Optics, vol. 31, pp. 3170-3177, Jun 1 1992.
[3] P. Biagioni, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, "Cross Resonant Optical Antenna," Physical Review Letters, vol. 102, Jun 26 2009.
[4] P.-N. Li, H.-H. Tsao, J.-S. Huang, and C.-B. Huang, "Subwavelength localization of near fields in coupled metallic spheres for single-emitter polarization analysis," Optics Letters, vol. 36, pp. 2339-2341, Jun 15 2011.
[5] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, et al., "Demonstration of a spaser-based nanolaser," Nature, vol. 460, pp. 1110-U68, Aug 27 2009.
[6] N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photonics, vol. 2, pp. 351-354, Jun 2008.
[7] S. Ishii, A. V. Kildishev, V. M. Shalaev, K.-P. Chen, and V. P. Drachev, "Metal nanoslit lenses with polarization-selective design," Optics Letters, vol. 36, pp. 451-453, Feb 15 2011.
[8] Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Letters, vol. 5, pp. 1726-1729, Sep 2005.
[9] W. Chen and Q. Zhan, "Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam," Optics Letters, vol. 34, pp. 722-724, Mar 15 2009.
[10] H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, "Synthesis and Dynamic Switching of Surface Plasmon Vortices with Plasmonic Vortex Lens," Nano Letters, vol. 10, pp. 529-536, Feb 2010.
[11] C.-D. Ku, W.-L. Huang, J.-S. Huang, and C.-B. Huang, "Deterministic Synthesis of Optical Vortices in Tailored Plasmonic Archimedes Spiral," Ieee Photonics Journal, vol. 5, Jun 2013.
[12] S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, "Miniature circular polarization analyzer with spiral plasmonic lens," Optics Letters, vol. 34, pp. 3047-3049, Oct 15 2009.
[13] K. T. Gahagan and G. A. Swartzlander, "Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap," Journal of the Optical Society of America B-Optical Physics, vol. 16, pp. 533-537, Apr 1999.
[14] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Optics Letters, vol. 11, pp. 288-290, May 1986.
[15] K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, "Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink," Nature Communications, vol. 2, Sep 2011.
[16] R. Quidant and C. Girard, "Surface-plasmon-based optical manipulation," Laser & Photonics Reviews, vol. 2, pp. 47-57, Apr 2008.
[17] M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, "Light-driven nanoscale plasmonic motors," Nature Nanotechnology, vol. 5, pp. 570-573, Aug 2010.
[18] M. L. Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics, vol. 5, pp. 349-356, Jun 2011.
[19] L. N. a. B. Hecht, Principles of Nano-Optic (Cambridge U. Press, 2006).
[20] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine, vol. 4, pp. 396-402, Jul-Dec 1902.
[21] U. Fano, "Some theoretical considerations on anomalous diffraction gratings," Physical Review, vol. 50, pp. 573-573, Sep 1936.
[22] U. Fano, "On the anomalous diffraction gratings II," Physical Review, vol. 51, pp. 288-288, Feb 1937.
[23] U. Fano, "On the theory of the intensity anomalies of diffraction," Annalen Der Physik, vol. 32, pp. 393-443, Jul 1938.
[24] U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America, vol. 31, pp. 213-222, Mar 1941.
[25] R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Physical Review, vol. 106, pp. 874-881, 1957.
[26] H. A. Atwater, "The promise of plasmonics," Scientific American, vol. 296, pp. 56-63, Apr 2007.
[27] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Optics Communications, vol. 112, pp. 321–327, 1994.
[28] A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, "Optical vortices and vortex solitons," Progress in Optics, Vol 47, vol. 47, pp. 291-391, 2005.
[29] N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, "Generation of optical phase singularities by computer-generated holograms," Optics Letters, vol. 17, pp. 221-223, Feb 1 1992.
[30] Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, "Observation of the spin-based plasmonic effect in nanoscale structures," Physical Review Letters, vol. 101, Jul 2008.
[31] H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, "Synthesis and Dynamic Switching of Surface Plasmon Vortices with Plasmonic Vortex Lens," Nano Letters, vol. 10, pp. 529-536, Feb 2010.
[32] G. H. Yuan, X. C. Yuan, J. Bu, P. S. Tan, and Q. Wang, "Manipulation of surface plasmon polaritons by phase modulation of incident light," Optics Express, vol. 19, pp. 224-229, Jan 2011.
[33] S.-W. Cho, J. Park, S.-Y. Lee, H. Kim, and B. Lee, "Coupling of spin and angular momentum of light in plasmonic vortex," Optics Express, vol. 20, Apr 23 2012.
[34] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, vol. 181, pp. 687-702, Mar 2010.
[35] A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Three Edition(2005).
[36] K. S. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," Ieee Transactions on Antennas and Propagation, vol. AP14, pp. 302-&, 1966 1966.
[37] E. D. Palik, Handbook of optical constants of solids (Academic Press, 1985).
[38] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics, vol. 37, pp. 5271-5283, Aug 1 1998.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *