帳號:guest(3.135.206.98)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):翁敬哲
作者(外文):Weng, Ching-Tzer
論文名稱(中文):2.7載波週期之光場量測與控制
論文名稱(外文):Measurement and control of 2.7-carrier-cycle optical field
指導教授(中文):楊尚達
指導教授(外文):Yang, Shang-Da
口試委員(中文):楊尚達
孔慶昌
藪下篤史
口試委員(外文):Yang, Shang-Da
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:101066518
出版年(民國):103
畢業學年度:102
語文別:英文
論文頁數:82
中文關鍵詞:超快光學脈衝量測
外文關鍵詞:Ultrafast opticsPulse measurement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:168
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
數個週期的近紅外光超短脈衝,對應的脈衝寬小於10飛秒(fs),由於它們超高的時間解析度、超寬的頻譜範圍與超強的強度峰值,目前已經受到相當好的關注。他們被用於各種不同的應用上,比如時間解析光譜儀和極紫外光與X射線孤立脈衝的高階倍頻產生。然而超短脈衝在介質傳遞時較易產生時間上的展寬,等於強加一個頻譜相位調變在輸入脈衝上。因此,對於在一些應用上能夠維持與控制超短脈衝波形來說,超短脈衝的振幅與相位資訊是相當重要的。目前已經有一些量測技術能解析數週期脈衝的電場資訊,它們都仰賴未知脈衝的非線性轉換訊號。在這篇論文,我們成功地提出以及證明藉由脈衝塑形器輔佐之修正場自相關干涉量測法"shaper-assisted modified interferometric field autocorrelation(MIFA)"與40微米厚的BBO能夠解析7.2飛秒、16披焦耳(pJ)近轉換極限極弱脈衝的頻譜相位,且中心波長為800奈米。實驗結果證明了這個方法的高準確性與重複性。我們的方法十分有吸引力,有幾項優點:(1)厚非線性晶體所對應的極高靈敏度。(2)不需要耗時的迭代演算。(3)量測與脈衝塑形的融合能夠得到任意脈衝波形。(4)簡易的實驗架構能避免環境干擾從而得到高穩定性。
Few-to-single cycle near-infrared pulses, with temporal envelop widths less than ten femtoseconds (1fs = 10-15 s), have received great attention for their ultrahigh time resolution, ultrabroad spectral range and enormous peak intensity. They have been used in versatile applications, such as time-resolved spectroscopy and high harmonic generation of isolated EUV (extreme ultraviolet radiation) /X-ray pulses. However, ultrashort optical pulses are prone to temporally broadened due to the dispersion of optical mediums, which introduce a spectral phase modulation upon the input pulse. Therefore, detailed information (amplitude and phase profiles) of ultrashort optical pulses is highly significant in terms of maintenance and control of the ultrafast waveforms in some applications. There have been a couple of measurement techniques that can retrieve the electric field of few-cycle pulses. Most of them rely on the nonlinearly converted signal of the unknown optical pulse. In this thesis, we proposed and experimentally demonstrated the shaper-assisted modified interferometric field autocorrelation (MIFA) method for retrieving the spectral phases of weak (16 pJ) 7.2 fs nearly transform-limited pulse and tailored waveforms at 800 nm by using a 40-um-thick BBO. Experiment results confirm the high accuracy and reproducibility of this method. Our method is attractive in terms of: (1) inherently high sensitivity arisen from using thick nonlinear crystal, (2) free of time-consuming iterative data inversion, (3) access to the desired waveform at the point of experiment by integration of measurement and shaping, (4) high stability against environmental perturbation due to the nearly common-path configuration.
ACKNOWLEDGEMENTS 3
CHAPTER 1 INTRODUCTION 11
CHAPTER 2 THEORIES 15
2.1 Field and intensity autocorrelation 16
2.2 Existing measurement methods of few-cycle pulse 20
2.2.1 Frequency-resolved optical gating (FROG) 20
2.2.2 Spectral interferometry for direct electric field reconstruction (SPIDER) 24
2.2.3 Multiphoton intrapulse interference phase scan (MIIPS) 31
2.3 Modified interferometric field autocorrelation (MIFA) 34
2.4 Pulse shaper and shaper-assisted measurement 41
CHAPTER 3 EXPERIMENTS 47
3.1 System design 47
3.1.1 Nonlinear crystal 47
3.1.2 Spatial light modulator 51
3.2 Experimental results 59
CHAPTER 4 CONCLUSIONS AND PERSPECTIVE 76
REFERENCES 79
1. A. Yabushita, Y. H. Lee, and T. Kobayashi, “Development of a multiplex fast-scan system for ultrafast time-resolved spectroscopy,” Review of Scientific Instruments 81 (2010).
2. T. Popmintchev, M. -C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, Margaret M. Murnane and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the KeV X-ray Regime from Mid-Infrared Femtosecond Lasers,” SCIENCE 336, 1287–1291 (2012).
3. A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating,” Optics Letters 23, 1474-1476 (1998).
4. S. Akturk, C. D’Amico, and A. Mysyrowicz, “Measuring ultrashort pulses in the single-cycle regime using frequency-resolved optical gating,” Journal of the Optical Society of America-B-Optical Physics 25, A63-A69 (2008).
5. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction,” Optics Letters 24, 1314-1316 (1999).
6. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Review of Scientific Instruments 71, 1929-1960 (2000).
7. B. von Vacano, T. Buckup, and M. Motzkus, “Shaper-assisted collinear SPIDER: fast and simple broadband pulse compression in nonlinear microscopy,” Journal of the Optical Society of America B-Optical Physics 24, 1091-1100 (2007).
8. A. Galler, and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Applied Physics B-Lasers and Optics 90, 427-430 (2008).
9. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C. -H. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,“ Journal of the Optical Society of America B-Optical Physics 25, A140-A150 (2008).
10. J. Möhring, T. Buckup, and M. Motzkus, “Shaper-assisted full-phase characterization of UV pulses without a spectrometer,” Optics Letters 35, 3916-3918 (2010).
11. A. M. Weiner, Ultrafast Optics (Wiley, 2009).
12. S. -D. Yang, C. -S. Hsu, S. -L. Lin, H. Miao, C. -B. Huang, and A. M. Weiner, “Direct spectral phase retrieval of ultrashort pulses by double modified one-dimensional autocorrelation traces,” Optics Express 16, 20617-20625 (2008).
13. S. -D. Yang, and Y. -Y. Huang, “Even-order spectral phase retrieval by modified interferometric field autocorrelation trace,” IEEE LEOS Annual Meeting Conference Proceedings, ThT3, 844-845 (2007).
14. S. -D. Yang, S. -L. Lin, and Y. -Y. Huang, “Complete Spectral Phase Retrieval by Modified Interferometric Field Autocorrelation Traces,” Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, JWA58, 2802-2803 (2008).
15. S. -D. Yang, C. -S. Hsu, S. -L. Lin, Y. -S. Lin, C. Langrock, and M. M. Fejer, “Ultrasensitive direct-field retrieval of femtosecond pulses by modified interferometric field autocorrelation,” Optics Letters 34, 3065-3067 (2009).
16. C. -S. Hsu, Y. H. Lee, A. Yabushita, T. Kobayashi, and S.-D. Yang, “Spectral phase retrieval of 8 fs optical pulses at 600nm by using a collinear autocorrelator with 300-μm-thick lithium triborate crystals,” Optics Letters 36, 2041–2043 (2011).
17. C. -S. Hsu, H. –C. Chiang, H. -P. Chuang, C. -B. Huang, and S.-D. Yang, “Forty-photon-per-pulse spectral phase retrieval by shaper-assisted modified interferometric field autocorrelation,” Optics Letters 36, 2611–2613 (2011).
18. S. -D. Yang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultrasensitive second-harmonic generation frequency-resolved optical gating by aperiodically poled LiNbO3 waveguides at 1.5 m,“ Optics Letters 30, 2164-2166 (2005).
19. S. -D. Yang, H. -X. Miao, Z. Jiang, A. M. Weiner, K. R. Parameswaran, and M. M. Fejer, “Ultrasensitive nonlinear measurements of femtosecond pulses in the telecommunications band by aperiodically poled LiNbO3 waveguides,” Applied Optics 46, 6759-6769 (2007).
20. L. -F. Yang, S. -L. Lin, and S. -D. Yang, “Ultrashort pulse measurements by interferometric spectrogram,” Optics Express 18, 6877-6884 (2010).
21. I. Amat-Roldán, I. G. Cormack and P. Loza-Alvarez, “Ultrashort pulse characterisation with SHG collinear-FROG,” Optics Express 12, 1169-1178 (2004).
22. G. Taft, A. Rundquist, M. M. Murnane, I. P. Christov, H. C. Kapteyn, K. W. DeLongs, D. N. Fittinghoff, M. A. Krumbugel, J. N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE Journal of Selected Topics in Quantum Electronics 2, 575-585 (1996).
23. C. Iaconis, and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Optics Letters 23, 792-794 (1998).
24. M. E. Anderson, A. Monmayrant, S. -P. Gorza, P. Wasylczyk, and I. A. Walmsley, “SPIDER: A decade of measuring ultrashort pulses,” Laser Physics Letters 5, 259-266 (2008).
25. P. Baum, and E. Riedle, “Design and calibration of zero-additional-phase SPIDER,” Journal of the Optical Society of America B-Optical Physics 22, 1875-1883 (2005).
26. T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. G. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Optics Letters 36, 1680–1682 (2011).
27. J. R. Birge, R. Ell, and F. X. Kärtner, “Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,” Optics Letters 31, 2063-2065 (2006).
28. K. Yamane, M. Katayose, and M. Yamashita, “Spectral phase characterization of two-octave bandwidth pulses by two-dimensional spectral shearing interferometry based on noncollinear phase matching with external pulse pair,” IEEE Photonics Technology Letters 23, 1130-1132 (2011).
29. M. Hirasawa, N. Nakagawa, K. Yamamoto, R. Morita, H. Shigekawa, and M. Yamashita, “Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses,” Applied Physics B-Lasers and Optics 74, S225-229 (2002).
30. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Optics Letters 29, 775-777 (2004).
31. J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, T. Baumert, “Zeptosecond precision pulse shaping,” Optic Express 19, 11638-11653 (2011).
32. C. -C. Chen, C. -B. Huang, and S. -D. Yang, “Self-referenced frequency comb measurement by using a polarization line-by-line pulse shaper,” Optics Letters 39, 1901-1904 (2014).
33. RefractiveIndex.INFO.
34. Z. Jiang, Memo: Reflective Pulse Shaper Design and Implementation with High Resolution / Low Loss (01/30/2004).
35. J. W. Wilson, P. Schlup, and R. A. Bartels, “Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask,” Optics Express 15, 8979-8987 (2007).
36. http://www.lasersafety.com/.
37. http://www.thorlabs.com/.
38. SCHOTT, “glass made of idea,” p116.
39. M. Yamashita, K. Yamane, and R. Morita, “Quasi-Automatic Phase-Control Technique for Chirp Compensation of Pulses With Over-One-Octave Bandwidth—Generation of Few- to Mono-Cycle Optical Pulses [Invited],” IEEE Journal of Selected Topics in Quantum Electronics 12, 213-222 (2006).
40. N. Dudovich, D. Oron and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512-514 (2002).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *