帳號:guest(3.141.192.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林政勳
作者(外文):Lin, Cheng-Hsuin
論文名稱(中文):使用電漿子狹縫之超穎介面產生非常態光偏折
論文名稱(外文):Anomalous Light Bending using Plasmonic Air Slit Metasurface
指導教授(中文):黃承彬
指導教授(外文):Huang, Chen-Bin
口試委員(中文):黃哲勳
陳國平
口試委員(外文):Huang, Jer-Shing
Chen, Kuo-Ping
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:101066517
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:47
中文關鍵詞:電漿子超穎介面
外文關鍵詞:PlasmonicMetasurface
相關次數:
  • 推薦推薦:0
  • 點閱點閱:333
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
  在這篇論文中,我們藉由刻在金薄膜上的V型狹縫陣列來產生非常態光偏折現象。在數值模擬的部分,我們使用有限時域差分法來得到較為精確的結果。當我們使用水平方向偏振的光垂直入射打到V型狹縫陣列的結構上時,除了產生一樣為水平方向偏振的穿透光之外,還會產生出偏振方向為垂直方向的偏折光,我們可以用廣義上的斯乃爾定律來解釋角度的偏折,藉由數值模擬的方式來找出適當的重複週期,我們就使用這個週期大小來做進一步的分析以及實際上用來進行實驗量測的樣品大小。
  而在實驗所使用的樣品上,我們在玻璃基板上用熱蒸鍍的方式鋪上一層金薄膜,再使用聚焦離子束的方式在金膜上刻出V型狹縫的陣列。實驗的架構上是使用架設出來的成像系統並用近紅外光的相機來收光。因光打在樣品後會產生出穿透光以及折射光,當我們觀察樣品下方的不同平面時,會觀察到兩個光點隨著觀察面的位置不同而有不同的間距,根據這些數值就可以計算出其折射角。最後藉由不同波長的光源以不同的入射角進行實驗,得到的結果亦可以很好的符合理論上的數值。
In this work, we demonstrate cross-polarization anomalous light refraction using V-shaped air slits array fabricated on a thin gold film. We use finite-difference time domain (FDTD) method to perform our simulation work. When the x-polarization light normally incident onto the slits array, there would be an x-polarized transmission light as well as an angle-bent y-polarized field. We can explain the bent light by the generalized Snell’s and find out the appropriate dimension. Thus the selected dimension could be used in further analysis and experiment measurement.
Our experiment sample is fabricated by focus ion beam (FIB) on thermally evaporated gold film with glass substrate. We use a simple imaging system with a near infrared(NIR) camera as our experimental setup. We collect the images at different positions under the sample stage to get different separation between transmission light and refraction light and thus count out the refraction angle. Furthermore, we use different wavelengths as our light source and find that the result angles match well to theoretical values.
摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 vi
第一章 序論 1
第二章 非常態光折射與數值模擬 3
2.1 理論與背景 4
2.1.1 金屬與光的交互作用 4
2.1.2 廣義的折射與反射定律 6
2.1.3 金屬天線與Mass-Spring model 8
2.1.4 電漿子天線超穎介面 10
2.2 狹縫超穎介面數值模擬 15
2.2.1 運算環境 15
2.2.2 狹縫產生相位延遲 16
2.2.3 電漿子狹縫超穎介面 19
第三章 實驗量測與分析 27
3.1 元件製作 28
3.2 實驗架構 30
3.3 量測方法 31
3.4 量測結果 35
3.4.1 CW雷射光源偏折角度量測 35
3.4.2 OPO光源偏折角度量測 39
第四章 總結與未來發展 41
附錄 43
參考文獻 45
[1] Wood, R. W. "On a remarkable case of uneven distribution of light in a diffraction grating spectrum." Philosophical Magazine 4(19-24): 396-402. (1902).
[2] Fano, U. "Some theoretical considerations on anomalous diffraction gratings." Physical Review 50(6): 573-573. (1936).
[3] Fano, U. "On the anomalous diffraction gratings II." Physical Review 51(4): 288-288. (1937).
[4] Fano, U. "On the theory of the intensity anomalies of diffraction." Annalen Der Physik 32(5): 393-443. (1938).
[5] Fano, U. "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)." Journal of the Optical Society of America 31(3): 213-222. (1941).
[6] Ritchie, R. H. "PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS." Physical Review 106(5): 874-881. (1957).
[7] Atwater, H. A. "The promise of plasmonics." Scientific American 296(4): 56-63. (2007).
[8] S. A. Maier, P. G. Kik, and H. A. Atwater "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss." Applied Physics Letters 81(9): 1714-1716. (2002).
[9] Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures." Physical Review B 78(15). (2008).
[10] Wenshan Cai, Wonseok Shin, Shanhui Fan, and Mark L. Brongersma "Elements for Plasmonic Nanocircuits with Three-Dimensional Slot Waveguides." Advanced Materials 22(45): 5120-5124. (2010).
[11] Zeyu Pan, Junpeng Guo, Richard Soref Walter Buchwald, and Greg Sun "Mode properties of flat-top silver nanoridge surface plasmon waveguides." Journal of the Optical Society of America B-Optical Physics 29(3): 340-345. (2012).
[12] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin "Nano-optics of surface plasmon polaritons." Physics Reports-Review Section of Physics Letters 408(3-4): 131-314. (2005).
[13] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna." Nature Photonics 3(11): 654-657. (2009).
[14] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst "Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna." Science 329(5994): 930-933. (2010).
[15] G. Volpe, R. Quidant, G. Badenes, and D. Petrov "Surface plasmon radiation forces." Physical Review Letters 96(23). (2006).
[16] M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range." Physical Review Letters 100(18). (2008).
[17] Huang, L. and O. J. F. Martin "Reversal of the optical force in a plasmonic trap." Optics Letters 33(24): 3001-3003. (2008).
[18] M. L. Juan, M. Righini, and R. Quidant "Plasmon nano-optical tweezers." Nature Photonics 5(6): 349-356. (2011).
[19] V. A. Podolskiy, et al. "Plasmon modes and negative refraction in metal nanowire composites." Optics Express 11(7): 735-745. (2003).
[20] V. M. Shalaev, et al. "Negative index of refraction in optical metamaterials." Optics Letters 30(24): 3356-3358. (2005).
[21] H. Shin, and S. H. Fan "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure." Physical Review Letters 96(7). (2006).
[22] K. V. Nerkararyan, et al. "Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons." Optics Letters 36(22): 4311-4313. (2011).
[23] A. Alu, and N. Engheta "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights." Optics Express 15(6): 3318-3332. (2007).
[24] B. Edwards, et al. "Experimental Verification of Plasmonic Cloaking at Microwave Frequencies with Metamaterials." Physical Review Letters 103(15). (2009).
[25] D. Rainwater, et al. "Experimental verification of three-dimensional plasmonic cloaking in free-space." New Journal of Physics 14. (2012).
[26] P. S. J. Russell, "Photonic crystals: Molding the flow of light - Joannopoulos,JD, Meade,RD, Winn,JN." Nature 381(6580): 290-290. (1996).
[27] N. Yu, et al. "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction." Science 334(6054): 333-337. (2011).
[28] N. Yu, et al. "Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces." Ieee Journal of Selected Topics in Quantum Electronics 19(3). (2013).
[29] F. Aieta, et al. "Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities." Nano Letters 12(3): 1702-1706. (2012).
[30] P. Genevet, et al. "Ultra-thin plasmonic optical vortex plate based on phase discontinuities." Applied Physics Letters 100(1). (2012).
[31] X. Ni, et al. "Broadband Light Bending with Plasmonic Nanoantennas." Science 335(6067): 427-427. (2012).
[32] L. Huang, et al. "Dispersionless Phase Discontinuities for Controlling Light Propagation." Nano Letters 12(11): 5750-5755. (2012).
[33] M. A. Kats, et al. "Effect of radiation damping on the spectral response of plasmonic components." Optics Express 19(22): 21748-21753. (2011).
[34] M. A. Kats, et al. "Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy." Proceedings of the National Academy of Sciences of the United States of America 109(31): 12364-12368. (2012).
[35] A. Taflove "APPLICATION OF THE FINITE-DIFFERENCE TIME-DOMAIN METHOD TO SINUSOIDAL STEADY-STATE ELECTROMAGNETIC- PENETRATION PROBLEMS." Ieee Transactions on Electromagnetic Compatibility 22(3): 191-202. (1980).
[36] J. P. Berenger "A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES." Journal of Computational Physics 114(2): 185-200. (1994).
[37] R. Mehfuz, et al. "Enhancing the efficiency of slit-coupling to surface-plasmon- polaritons via dispersion engineering." Optics Express 18(17): 18206-18216. (2010).
[38] M. W. Maqsood, et al. "High-throughput diffraction-assisted surface-plasmon- polariton coupling by a super-wavelength slit." Optics Express 18(21): 21669-21677. (2010).
[39] R. Mehfuz, et al. "Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy." Optics Express 20(10): 10526-10537. (2012).
[40] Y. Xie, et al. "Transmission of light through slit apertures in metallic films." Optics Express 12(25): 6106-6121. (2004).
[41] F. Kalkum, et al. "Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films." Optics Express 15(5): 2613-2621. (2007).
[42] B. Lee, et al. "The use of plasmonics in light beaming and focusing." Progress in Quantum Electronics 34(2): 47-87. (2010).
[43] J. Lin, et al. "Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons." Science 340(6130): 331-334. (2013).
[44] T. Zentgraf, et al. "Babinet's principle for optical frequency metamaterials and nanoantennas." Physical Review B 76(3). (2007).
[45] J. Liu, et al. “Experimental validation of a new bianisotropic parameter retrieval technique using plasmonic metasurfaces made of V-shape antennas.” Conference on Metamaterials - Fundamentals and Applications VI, San Diego, CA.0 (2013).
[46] M. Hentschel, et al. "Babinet to the Half: Coupling of Solid and Inverse Plasmonic Structures." Nano Letters 13(9): 4428-4433. (2013).
[47] S. E. Harris "TUNABLE OPTICAL PARAMETRIC OSCILLATORS." Proceedings of the Ieee 57(12): 2096-2113. (1969).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *