|
[1] Wood, R. W. "On a remarkable case of uneven distribution of light in a diffraction grating spectrum." Philosophical Magazine 4(19-24): 396-402. (1902). [2] Fano, U. "Some theoretical considerations on anomalous diffraction gratings." Physical Review 50(6): 573-573. (1936). [3] Fano, U. "On the anomalous diffraction gratings II." Physical Review 51(4): 288-288. (1937). [4] Fano, U. "On the theory of the intensity anomalies of diffraction." Annalen Der Physik 32(5): 393-443. (1938). [5] Fano, U. "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)." Journal of the Optical Society of America 31(3): 213-222. (1941). [6] Ritchie, R. H. "PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS." Physical Review 106(5): 874-881. (1957). [7] Atwater, H. A. "The promise of plasmonics." Scientific American 296(4): 56-63. (2007). [8] S. A. Maier, P. G. Kik, and H. A. Atwater "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss." Applied Physics Letters 81(9): 1714-1716. (2002). [9] Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures." Physical Review B 78(15). (2008). [10] Wenshan Cai, Wonseok Shin, Shanhui Fan, and Mark L. Brongersma "Elements for Plasmonic Nanocircuits with Three-Dimensional Slot Waveguides." Advanced Materials 22(45): 5120-5124. (2010). [11] Zeyu Pan, Junpeng Guo, Richard Soref Walter Buchwald, and Greg Sun "Mode properties of flat-top silver nanoridge surface plasmon waveguides." Journal of the Optical Society of America B-Optical Physics 29(3): 340-345. (2012). [12] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin "Nano-optics of surface plasmon polaritons." Physics Reports-Review Section of Physics Letters 408(3-4): 131-314. (2005). [13] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna." Nature Photonics 3(11): 654-657. (2009). [14] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst "Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna." Science 329(5994): 930-933. (2010). [15] G. Volpe, R. Quidant, G. Badenes, and D. Petrov "Surface plasmon radiation forces." Physical Review Letters 96(23). (2006). [16] M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range." Physical Review Letters 100(18). (2008). [17] Huang, L. and O. J. F. Martin "Reversal of the optical force in a plasmonic trap." Optics Letters 33(24): 3001-3003. (2008). [18] M. L. Juan, M. Righini, and R. Quidant "Plasmon nano-optical tweezers." Nature Photonics 5(6): 349-356. (2011). [19] V. A. Podolskiy, et al. "Plasmon modes and negative refraction in metal nanowire composites." Optics Express 11(7): 735-745. (2003). [20] V. M. Shalaev, et al. "Negative index of refraction in optical metamaterials." Optics Letters 30(24): 3356-3358. (2005). [21] H. Shin, and S. H. Fan "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure." Physical Review Letters 96(7). (2006). [22] K. V. Nerkararyan, et al. "Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons." Optics Letters 36(22): 4311-4313. (2011). [23] A. Alu, and N. Engheta "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights." Optics Express 15(6): 3318-3332. (2007). [24] B. Edwards, et al. "Experimental Verification of Plasmonic Cloaking at Microwave Frequencies with Metamaterials." Physical Review Letters 103(15). (2009). [25] D. Rainwater, et al. "Experimental verification of three-dimensional plasmonic cloaking in free-space." New Journal of Physics 14. (2012). [26] P. S. J. Russell, "Photonic crystals: Molding the flow of light - Joannopoulos,JD, Meade,RD, Winn,JN." Nature 381(6580): 290-290. (1996). [27] N. Yu, et al. "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction." Science 334(6054): 333-337. (2011). [28] N. Yu, et al. "Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces." Ieee Journal of Selected Topics in Quantum Electronics 19(3). (2013). [29] F. Aieta, et al. "Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities." Nano Letters 12(3): 1702-1706. (2012). [30] P. Genevet, et al. "Ultra-thin plasmonic optical vortex plate based on phase discontinuities." Applied Physics Letters 100(1). (2012). [31] X. Ni, et al. "Broadband Light Bending with Plasmonic Nanoantennas." Science 335(6067): 427-427. (2012). [32] L. Huang, et al. "Dispersionless Phase Discontinuities for Controlling Light Propagation." Nano Letters 12(11): 5750-5755. (2012). [33] M. A. Kats, et al. "Effect of radiation damping on the spectral response of plasmonic components." Optics Express 19(22): 21748-21753. (2011). [34] M. A. Kats, et al. "Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy." Proceedings of the National Academy of Sciences of the United States of America 109(31): 12364-12368. (2012). [35] A. Taflove "APPLICATION OF THE FINITE-DIFFERENCE TIME-DOMAIN METHOD TO SINUSOIDAL STEADY-STATE ELECTROMAGNETIC- PENETRATION PROBLEMS." Ieee Transactions on Electromagnetic Compatibility 22(3): 191-202. (1980). [36] J. P. Berenger "A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES." Journal of Computational Physics 114(2): 185-200. (1994). [37] R. Mehfuz, et al. "Enhancing the efficiency of slit-coupling to surface-plasmon- polaritons via dispersion engineering." Optics Express 18(17): 18206-18216. (2010). [38] M. W. Maqsood, et al. "High-throughput diffraction-assisted surface-plasmon- polariton coupling by a super-wavelength slit." Optics Express 18(21): 21669-21677. (2010). [39] R. Mehfuz, et al. "Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy." Optics Express 20(10): 10526-10537. (2012). [40] Y. Xie, et al. "Transmission of light through slit apertures in metallic films." Optics Express 12(25): 6106-6121. (2004). [41] F. Kalkum, et al. "Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films." Optics Express 15(5): 2613-2621. (2007). [42] B. Lee, et al. "The use of plasmonics in light beaming and focusing." Progress in Quantum Electronics 34(2): 47-87. (2010). [43] J. Lin, et al. "Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons." Science 340(6130): 331-334. (2013). [44] T. Zentgraf, et al. "Babinet's principle for optical frequency metamaterials and nanoantennas." Physical Review B 76(3). (2007). [45] J. Liu, et al. “Experimental validation of a new bianisotropic parameter retrieval technique using plasmonic metasurfaces made of V-shape antennas.” Conference on Metamaterials - Fundamentals and Applications VI, San Diego, CA.0 (2013). [46] M. Hentschel, et al. "Babinet to the Half: Coupling of Solid and Inverse Plasmonic Structures." Nano Letters 13(9): 4428-4433. (2013). [47] S. E. Harris "TUNABLE OPTICAL PARAMETRIC OSCILLATORS." Proceedings of the Ieee 57(12): 2096-2113. (1969).
|