帳號:guest(3.128.201.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李允中
作者(外文):Lee, Yun Chung
論文名稱(中文):利用電漿子光學天線產生頻率轉換之探討
論文名稱(外文):Investigation of Frequency Up-conversion in Plasmonics Optical Antennas
指導教授(中文):黃承彬
指導教授(外文):Huang, Chen Bin
口試委員(中文):陳國平
黃哲勳
黃承彬
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:101066516
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:39
中文關鍵詞:非線性電漿子光學天線三倍頻
外文關鍵詞:nonlinear plasmonicsoptical antennathird harmonic generation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:189
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
本論文利用有限時域差分法以數值模擬的方式設計電漿子光學天線,得到單一對雙線天線總長600nm~640nm時對於紅外光波段1560nm的光學響應達到最佳化,利用侷限性表面電漿的場強化特性來產生光學的非線性轉換。
樣品製成利用電子束微影技術,在石英玻璃基板上製作金的奈米天線陣列,單一種尺寸的天線陣列大小達到100um×100um。在測量上,激發光利用聚焦透鏡將平均功率約110mW,重複率80MHz,脈衝寬約60飛秒的脈衝雷射聚焦至樣品區域,收光端利用自組光學顯微鏡架構將訊號呈現於camera及spectrometer上。最後對於實驗數據的非線性頻譜、偏振態及能量關係作分析,與模擬結果做比對。利用偏振態相關性和與入射能量關係圖,驗證三倍頻訊號是否由天線陣列產生。
In this work, we used finite-difference time-domain (FDTD) numerical analyses to find the optimized dimensions of plasmonics gap antenna arrays for near-infrared femtosecond laser which center wavelength is 1560nm. Total length of each gap antenna pair is designed for largest field enhancement at 1560nm. We find total length around 600nm to 640nm had best optical response for localized surface plasmon (LSP) field enhancement. High field enhancement caused by LSP give our large potential to induce nonlinear effect from our device.
We used e-beam lithography (EBL) to fabricate the antenna. Each antenna array with different parameters covered 100um×100um area. Femtosecond pulse laser was used in experiment whose average power was 110mW, pulse duration was about 60 fs and with repetition rate 80MHz. Measurement data was recorded by camera and spectrometer in optical microscopy system. Finally, we compared experimental data with simulation to give our good promise for nonlinear effect generation by plasmonic gap antenna array.
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VI
表目錄 VII
第一章 序論 1
第二章 表面電漿子理論及其非線性分析 3
2.1 光頻率下的金屬 4
2.2 電漿子光學天線的特性及理論模型 6
2.3 非線性光學及非線性極化率 10
2.4 電漿子光學天線設計及數值模擬 14
第三章 元件製備、實驗架構及量測 20
3.1 電漿子光學天線設計及製備 21
3.2 實驗量測架構及實驗步驟 23
3.3 實驗量測結果 27
3.3.1 天線陣列之三倍頻產生 27
3.3.2 天線陣列入射光與三倍頻能量關係 28
3.3.3 天線陣列三倍頻產生之偏振相關性 30
3.3.4 天線陣列之二倍頻產生 32
第四章 結論及未來展望 36
參考文獻 37
1. Wood, R.W., XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6, 1902. 4(21): p. 396-402.
2. Fano, U., Some theoretical considerations on anomalous diffraction gratings. Physical Review, 1936. 50(6): p. 573-573.
3. Fano, U., On the anomalous diffraction gratings II. Physical Review, 1937. 51(4): p. 288-288.
4. Fano, U., On the theory of the intensity anomalies of diffraction. Annalen Der Physik, 1938. 32(5): p. 393-443.
5. Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves). Journal of the Optical Society of America, 1941. 31(3): p. 213-222.
6. Ritchie, R.H., PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS. Physical Review, 1957. 106(5): p. 874-881.
7. Atwater, H.A., The promise of plasmonics. Scientific American, 2007. 296(4): p. 56-63.
8. Maier, S.A., P.G. Kik, and H.A. Atwater, Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Applied Physics Letters, 2002. 81(9): p. 1714-1716.
9. Kik, P.G. and H.A. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides. Physical Review B, 2003. 67(20): p. -.
10. Jun, Y.C., et al., Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures. Physical Review B, 2008. 78(15): p. 4.
11. Aeschlimann, M., et al., Adaptive subwavelength control of nano-optical fields. Nature, 2007. 446(7133): p. 301-304.
12. Nahata, A., et al., Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Optical letters, 2003. 28(6): p. 425.
13. Kim, S., et al., High-harmonic generation by resonant plasmon field enhancement. Nature, 2008. 453(- 7196): p. 760.
14. Krauss, G., et al., Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses. Physical Review Letters, 2009. 103(25).
15. Cai, W.S., A.P. Vasudev, and M.L. Brongersma, Electrically Controlled Nonlinear Generation of Light with Plasmonics. Science, 2011. 333(6050): p. 1720-1723.
16. Kauranen, M. and A.V. Zayats, Nonlinear plasmonics. Nat Photon, 2012. 6(11): p. 737-748.
17. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, in Annual Review of Physical Chemistry. 2007, Annual Reviews: Palo Alto. p. 267-297.
18. Anker, J.N., et al., Biosensing with plasmonic nanosensors. Nat Mater, 2008. 7(6): p. 442-453.
19. Mühlschlegel, P., et al., Resonant Optical Antennas. Science, 2005. 308(5728): p. 1607-1609.
20. Bharadwaj, P., B. Deutsch, and L. Novotny, Optical Antennas. Advances in Optics and Photonics, 2009. 1(3): p. 438-483.
21. Dorfmüller, J., et al., Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory. Nano Letters, 2010. 10(9): p. 3596-3603.
22. Paolo, B., H. Jer-Shing, and H. Bert, Nanoantennas for visible and infrared radiation. Reports on Progress in Physics, 2012. 75(2): p. 024402.
23. Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics Reports, 2005. 408(3–4): p. 314.
24. Novotny, L. and N. van Hulst, Antennas for light. Nature Photonics, 2011. 5(2): p. 90.
25. Pu, Y., et al., Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation. Physical Review Letters, 2010. 104(20): p. 207402.
26. Zhang, Y., et al., Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano Letters, 2011. 11(12): p. 5519-5523.
27. Bouhelier, A., et al., Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods. Physical Review Letters, 2005. 95(26): p. 267405.
28. Harutyunyan, H., et al., Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas. Physical Review Letters, 2012. 108(21): p. 217403.
29. Hentschel, M., et al., Quantitative Modeling of the Third Harmonic Emission Spectrum of Plasmonic Nanoantennas. Nano Letters, 2012. 12(7): p. 3778-3782.
30. Metzger, B., et al., Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Optics Letters, 2012. 37(22): p. 4741-4743.
31. Jackson, J.D., Classical Electrodynamics 3rd edn. 1999.
32. Novotny, L. and B. Hecht, Principles of Nano-Optics 2nd edn.
33. Johnson, P.B. and R.W. Christy, Optical Constants of the Noble Metals. Physical Review B, 1972. 6(12): p. 4370-4379.
34. Etchegoin, P.G., E.C. Le Ru, and M. Meyer, An analytic model for the optical properties of gold. The Journal of Chemical Physics, 2006. 125(16): p. 164705.
35. Bohren, C.F. and D.R. Huffman, Absorption and scattering of light by small particles. 1983.
36. Stefan Kooij, E. and B. Poelsema, Shape and size effects in the optical properties of metallic nanorods. Physical Chemistry Chemical Physics, 2006. 8(28): p. 3349-3357.
37. Boyd, R.W., Chapter 1 - The Nonlinear Optical Susceptibility, in Nonlinear Optics (Third Edition), R.W. Boyd, Editor. 2008, Academic Press: Burlington. p. 1-67.
38. Boyd, R.W., Chapter 4 - The Intensity-Dependent Refractive Index, in Nonlinear Optics (Third Edition), R.W. Boyd, Editor. 2008, Academic Press: Burlington. p. 207-252.
39. Stefano, P., D. Matthias, and N. Lukas, Nonlinear plasmonics with gold nanoparticle antennas. Journal of Optics A: Pure and Applied Optics, 2009. 11(11): p. 114030.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *