|
1. Wood, R.W., XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6, 1902. 4(21): p. 396-402. 2. Fano, U., Some theoretical considerations on anomalous diffraction gratings. Physical Review, 1936. 50(6): p. 573-573. 3. Fano, U., On the anomalous diffraction gratings II. Physical Review, 1937. 51(4): p. 288-288. 4. Fano, U., On the theory of the intensity anomalies of diffraction. Annalen Der Physik, 1938. 32(5): p. 393-443. 5. Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves). Journal of the Optical Society of America, 1941. 31(3): p. 213-222. 6. Ritchie, R.H., PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS. Physical Review, 1957. 106(5): p. 874-881. 7. Atwater, H.A., The promise of plasmonics. Scientific American, 2007. 296(4): p. 56-63. 8. Maier, S.A., P.G. Kik, and H.A. Atwater, Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Applied Physics Letters, 2002. 81(9): p. 1714-1716. 9. Kik, P.G. and H.A. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides. Physical Review B, 2003. 67(20): p. -. 10. Jun, Y.C., et al., Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures. Physical Review B, 2008. 78(15): p. 4. 11. Aeschlimann, M., et al., Adaptive subwavelength control of nano-optical fields. Nature, 2007. 446(7133): p. 301-304. 12. Nahata, A., et al., Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Optical letters, 2003. 28(6): p. 425. 13. Kim, S., et al., High-harmonic generation by resonant plasmon field enhancement. Nature, 2008. 453(- 7196): p. 760. 14. Krauss, G., et al., Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses. Physical Review Letters, 2009. 103(25). 15. Cai, W.S., A.P. Vasudev, and M.L. Brongersma, Electrically Controlled Nonlinear Generation of Light with Plasmonics. Science, 2011. 333(6050): p. 1720-1723. 16. Kauranen, M. and A.V. Zayats, Nonlinear plasmonics. Nat Photon, 2012. 6(11): p. 737-748. 17. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, in Annual Review of Physical Chemistry. 2007, Annual Reviews: Palo Alto. p. 267-297. 18. Anker, J.N., et al., Biosensing with plasmonic nanosensors. Nat Mater, 2008. 7(6): p. 442-453. 19. Mühlschlegel, P., et al., Resonant Optical Antennas. Science, 2005. 308(5728): p. 1607-1609. 20. Bharadwaj, P., B. Deutsch, and L. Novotny, Optical Antennas. Advances in Optics and Photonics, 2009. 1(3): p. 438-483. 21. Dorfmüller, J., et al., Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory. Nano Letters, 2010. 10(9): p. 3596-3603. 22. Paolo, B., H. Jer-Shing, and H. Bert, Nanoantennas for visible and infrared radiation. Reports on Progress in Physics, 2012. 75(2): p. 024402. 23. Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics Reports, 2005. 408(3–4): p. 314. 24. Novotny, L. and N. van Hulst, Antennas for light. Nature Photonics, 2011. 5(2): p. 90. 25. Pu, Y., et al., Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation. Physical Review Letters, 2010. 104(20): p. 207402. 26. Zhang, Y., et al., Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano Letters, 2011. 11(12): p. 5519-5523. 27. Bouhelier, A., et al., Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods. Physical Review Letters, 2005. 95(26): p. 267405. 28. Harutyunyan, H., et al., Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas. Physical Review Letters, 2012. 108(21): p. 217403. 29. Hentschel, M., et al., Quantitative Modeling of the Third Harmonic Emission Spectrum of Plasmonic Nanoantennas. Nano Letters, 2012. 12(7): p. 3778-3782. 30. Metzger, B., et al., Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Optics Letters, 2012. 37(22): p. 4741-4743. 31. Jackson, J.D., Classical Electrodynamics 3rd edn. 1999. 32. Novotny, L. and B. Hecht, Principles of Nano-Optics 2nd edn. 33. Johnson, P.B. and R.W. Christy, Optical Constants of the Noble Metals. Physical Review B, 1972. 6(12): p. 4370-4379. 34. Etchegoin, P.G., E.C. Le Ru, and M. Meyer, An analytic model for the optical properties of gold. The Journal of Chemical Physics, 2006. 125(16): p. 164705. 35. Bohren, C.F. and D.R. Huffman, Absorption and scattering of light by small particles. 1983. 36. Stefan Kooij, E. and B. Poelsema, Shape and size effects in the optical properties of metallic nanorods. Physical Chemistry Chemical Physics, 2006. 8(28): p. 3349-3357. 37. Boyd, R.W., Chapter 1 - The Nonlinear Optical Susceptibility, in Nonlinear Optics (Third Edition), R.W. Boyd, Editor. 2008, Academic Press: Burlington. p. 1-67. 38. Boyd, R.W., Chapter 4 - The Intensity-Dependent Refractive Index, in Nonlinear Optics (Third Edition), R.W. Boyd, Editor. 2008, Academic Press: Burlington. p. 207-252. 39. Stefano, P., D. Matthias, and N. Lukas, Nonlinear plasmonics with gold nanoparticle antennas. Journal of Optics A: Pure and Applied Optics, 2009. 11(11): p. 114030.
|