帳號:guest(3.147.77.245)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃致達
作者(外文):Huang, Chih-Ta
論文名稱(中文):日前預先定價及排程考慮負載及 再生能量來源不確定性
論文名稱(外文):Day-Ahead Pricing and Scheduling with Uncertainty of Load and Renewable Energy Sources
指導教授(中文):洪樂文
指導教授(外文):Hong, Yao-Win Peter
口試委員(中文):張正尚
林靖茹
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:101064529
出版年(民國):103
畢業學年度:103
語文別:英文中文
論文頁數:36
中文關鍵詞:日前預先排程日前預先定價
相關次數:
  • 推薦推薦:0
  • 點閱點閱:507
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本論文探討聯合最佳化家庭日前預先排程以及公司日前預先定價的問題。我們考慮非彈性用電和再生能源的不確定性,以及使用電池去調整家庭用電。給定已知的電價以及非彈性用電和再生能源的統計特性,而且考慮最大用電負載量以及電池用電違反的機率約束,我們要去調整彈性用電去最小化電費的期望值減去使用者的舒適度。這個問題我們針對代表半彈性用電起始時間的排程變數之集合使用鬆弛法,以及對於機率約束使用馬可夫界和樣本平均近似法得到近似解。這個問題也包含機組排程問題,也就是如果執行電器所獲得的舒適度小於執行所造成的電費,這個電器就不會執行。我們所提出的演算法在模擬中表現比貪婪法所得到的更好。接下來,給定設計好的消費者端排程策略,公司端的日前預先買電以及定價可以用微粒群演算法解決。特別是給定日前預先以及即時買電的成本函數,電力公司要決定向消費手收取的電價以及要從日前預先市場中購買多少份量的電能。微粒群演算法生成候選電價數值傳遞得消費者,再針對消費者傳回的負載計畫更新候選電價數值。針對這個部分有電腦模擬展示我們所提出演算法的效能。
Abstract i
Contents iii
1 Introduction 1
2 Day-Ahead Load Scheduling at the Consumer Side 5
2.1 Formulation of the Load Scheduling Problem with Chance Constraints . . . 5
2.2 Problem Reformulation and Relaxation . . . . . . . . . . . . . . . . . . . . . 9
2.3 Restriction and Sample Average Approximation of the Chance Constraints . 11
2.4 Mapping to Feasible Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Day-Ahead Pricing and Procurement at the Utility Company 16
3.1 Formulation of the Pricing and Procurement Problems . . . . . . . . . . . . 16
3.2 Solution based on Particle Swarm Optimization . . . . . . . . . . . . . . . . 18
4 Computer Simulations and Performance Comparisons 23
5 Conclusions 30
[1] M. Alizadeh, Xiao Li, Zhifang Wang, A. Scaglione, R. Melton, ”Demand-Side Management
in the Smart Grid: Information Processing for the Power Switch,” IEEE Signal
Processing Magazine, vol.29, no.5, pp.55,67, Sept. 2012.
[2] A. Ipakchi and F. Albuyeh, “Grid of the future,”IEEE Power and Energy Magazine,
vol.7, no.2, pp.52,62, March-April 2009.
[3] K. C. Sou, J. Weimer, H. Sandberg, and K. H. Johansson, “Scheduling Smart Home
Appliances Using Mixed Integer Linear Programming,” Proceeding of IEEE Conference
on Decision and Control and European Control Conference, pp. 5144-5149, Dec. 2011.
[4] S. Nistor, J. Wu, M. Sooriyabandara, J. Ekanayake, “Cost Optimization of Smart Appliance,”
Proceeding of Innovative Smart Grid Technologies (ISGT), pp. 1-5, Dec. 2011.
[5] Yong Liang, Long He, Xinyu Cao, Zuo-Jun Shen, ”Stochastic Control for Smart
Grid Users With Flexible Demand,” IEEE Transactions on Smart Grid, vol.4, no.4,
pp.2296,2308, Dec. 2013.
[6] P. Samadi, H. Mohsenian-Rad, V. W. S. Wong, R. Schober, ”Tackling the Load Uncertainty
Challenges for Energy Consumption Scheduling in Smart Grid,” IEEE Transac-
tions on Smart Grid, vol.4, no.2, pp.1007,1016, June 2013.
[7] Chaoyue Zhao, Jianhui Wang, J. P. Watson, Yongpei Guan, ”Multi-Stage Robust Unit
Commitment Considering Wind and Demand Response Uncertainties,” IEEE Transac-
tions on Power Systems, vol.28, no.3, pp.2708,2717, Aug. 2013.
[8] Yingsong Huang, Shiwen Mao, ”Adaptive electricity scheduling with quality of usage
guarantees in microgrids,” IEEE Global Communications Conference (GLOBECOM),
vol., no., pp.5160,5165, 3-7 Dec. 2012.
[9] Xiaodao Chen, Tongquan Wei, Shiyan Hu, ”Uncertainty-Aware Household Appliance
Scheduling Considering Dynamic Electricity Pricing in Smart Home,” IEEE Transac-
tions on Smart Grid, vol.4, no.2, pp.932,941, June 2013.
[10] I Atzeni, L. G. Ordonez, G. Scutari, D. P. Palomar, J.R. Fonollosa, ”Noncooperative
and Cooperative Optimization of Distributed Energy Generation and Storage in the
Demand-Side of the Smart Grid,” IEEE Transactions on Signal Processing, vol.61,
no.10, pp.2454,2472, May15, 2013.
[11] Yifan Li, R. Kaewpuang, Ping Wang, D. Niyato and Zhu Han, “An energy efficient solution:
Integrating Plug-In Hybrid Electric Vehicle in smart grid with renewable energy,”
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pp. 73-78 Mar. 2012.
[12] A. Y. Saber, G. K. Venayagamoorthy, ”Resource Scheduling Under Uncertainty in a
Smart Grid With Renewables and Plug-in Vehicles,” IEEE Systems Journal, vol.6,
no.1, pp.103,109, March 2012.
[13] Enxin Yao, P. Samadi, V. W. S. Wong, and R. Schober, “Tackling the photovoltaic integration
challenge in the distribution network with deferrable load,” IEEE International
Conference on Smart Grid Communications (SmartGridComm), pp. 528-533 Oct. 2013.
[14] A-H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, A. Leon-Garcia, ”Autonomous
Demand-Side Management Based on Game-Theoretic Energy Consumption
Scheduling for the Future Smart Grid,” IEEE Transactions on Smart Grid, vol.1, no.3,
pp.320,331, Dec. 2010.
[15] N. Gatsis, G. B. Giannakis, ”Cooperative multi-residence demand response scheduling,”
Annual Conference on Information Sciences and Systems (CISS) , vol., no., pp.1,6, 23-
25 March 2011.
[16] Xi Luan, Jianjun Wu, Shubo Ren, Haige Xiang, ”Cooperative power consumption in the
smart grid based on coalition formation game,” International Conference on Advanced
Communication Technology (ICACT), vol., no., pp.640,644, 16-19 Feb. 2014.
[17] S. Subramanian, S. Ghosh, J. R. M. Hosking, R. Natarajan, Xiaoxuan Zhang, ”Dynamic
price optimization models for managing time-of-day electricity usage,” IEEE In-
ternational Conference on Smart Grid Communications (SmartGridComm), vol., no.,
pp.163,168, 21-24 Oct. 2013.
[18] Shengrong Bu, F. R. Yu, P. X. Liu, ”A game-theoretical decision-making scheme for electricity
retailers in the smart grid with demand-side management,” IEEE International
Conference on Smart Grid Communications (SmartGridComm), vol., no., pp.387,391,
17-20 Oct. 2011.
[19] Kai Ma, Guoqiang Hu, C. J. Spanos, ”Distributed Energy Consumption Control via
Real-Time Pricing Feedback in Smart Grid,” IEEE Transactions on Control Systems
Technology, vol.22, no.5, pp.1907,1914, Sept. 2014.
[20] Li Ping Qian, Y. J. A. Zhang, Jianwei Huang, Yuan Wu, ”Demand Response Management
via Real-Time Electricity Price Control in Smart Grids,” IEEE Journal on
Selected Areas in Communications, vol.31, no.7, pp. 1268-1280, July 2013.
[21] Guohua Jiang, Li Yu, Yuan Wu, Wen-Zhan Song, ”Cooperative electricity consumption
scheduling and pricing for future residential smart grid,” Asian Control Conference
(ASCC), vol., no., pp.1,6, 23-26 June 2013.
[22] L. jiang, S. Low, “Multi-period optimal energy procurement and demand response in
smart grid with uncertain supply,” IEEE Conference on Decision and Control and Eu-
ropean Control Conference (CDC-ECC), pp. 4348-4353, Dec. 2011.
[23] Longbo Huang, J. Walrand, K. Ramchandran, “Optimal power procurement and demand
response with quality-of-usage guarantees,” IEEE Power and Energy Society Gen-
eral Meeting, pp. 1-8, July 2012.
[24] P. Vasant, T. Ganesan, I. Elamvazuthi, ”An improved PSO approach for solving nonconvex
optimization problems” International Conference on ICT and Knowledge Engi-
neering, vol., no., pp.80,87, 12-13 Jan. 2012.
[25] A. Bhattacharya, P. K. Chattopadhyay, ”A modified Particle Swarm Optimization
for solving the non-convex economic dispatch,” International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), vol.01, no., pp.78,81, 6-9 May 2009.
[26] V. K. Jadoun, K. R. Niazi, A. Swarnkar, N. Gupta, ”Variable Acceleration Coefficientbased
Particle Swarm Optimization for Non-Convex Economic load dispatch problem,”
IEEE PESInnovative Smart Grid Technologies - India (ISGT India), vol., no.,
pp.126,130, 1-3 Dec. 2011.
[27] Xia Shiwei, Bai Xuefeng, Guo Zhizhong, Xu Ying, ”Improved Particle Swarm Optimization
for Non-Convex Optimal Power Flow,” Asia-Pacific Power and Energy Engineering
Conference (APPEEC), vol., no., pp.1,5, 27-29 March 2012.
[28] A. S. Majid, E. Joelianto,”Optimal sensor deployment in non-convex region using Discrete
Particle Swarm Optimization algorithm,” IEEE Conference on Control, Systems
and Industrial Informatics (ICCSII), vol., no., pp.109,113, 23-26 Sept. 2012.
[29] S. Motiian, M. Aghababaie, H. Soltanian-Zadeh, ”Particle Swarm Optimization (PSO)
of power allocation in cognitive radio systems with interference constraints,” IEEE In-
ternational Conference on Broadband Network and Multimedia Technology (IC-BNMT),
vol., no., pp.558,562, 28-30 Oct. 2011.
[30] A. Ratnaweera, S. Halgamuge, H. C. Watson, ”Self-organizing hierarchical particle
swarm optimizer with time-varying acceleration coefficients,” IEEETransactions on
Evolutionary Computation, vol.8, no.3, pp.240,255, June 2004.
[31] R. C. Eberhart, Y. Shi, ”Comparing inertia weights and constriction factors in particle
swarm optimization,” Proceedings of the Congress on Evolutionary Computation, vol.1,
no., pp.84,88, July 2000.
[32] D. Hoak, D. Parker, and A. Hermelink, “How energy efficient are modern dishwashers,”
Proceeding of ACEEE Summer Study Energy Efficiency Buildings, Aug. 2008.
[33] Z. Zhu, J. Tang, S. Lambotharan, W. H. Chin, and Z. Fan, “An Integer Linear Programming
Based Optimization for Home Demand-side Management in Smart Grid,”
Proceeding of Innovative Smart Grid Technologies (ISGT), pp. 1-5, Jan. 2012.
[34] J. V. Paatero and P. D. Lund, ”A model for generating household electricity load
profiles,” Int. J. Energy Res., vol. 30, pp. 273290, 2006.
[35] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge University Press,
2004.
[36] Solar energy data from Commercial Cooking Appliance Technology Assessment [Online],
Available at http://www.hanergy.co.uk/go-solar/.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *