帳號:guest(3.133.130.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):余佩珊
論文名稱(中文):能量採集異質網路之流量卸載研究
論文名稱(外文):Traffic Offloading in Energy Harvesting Heterogeneous Networks
指導教授(中文):洪樂文
口試委員(中文):李佳翰
劉俊宏
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:101064525
出版年(民國):103
畢業學年度:103
語文別:英文
論文頁數:44
中文關鍵詞:能量採集流量卸載網路傳輸率能量效率隨機幾何
外文關鍵詞:energy Harvestingtraffic offloadingnetwork throughputenergy efficiencystochastic geometry
相關次數:
  • 推薦推薦:0
  • 點閱點閱:463
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本論文旨在建立包含多個能量採集蜂巢式系統的異質蜂巢式網路中之分析架構,並透過此分析架構來評估網路傳輸量和能源效率。此文中探討之網路結構包含一層的傳統接電基地台以及多層的能量採集小型細胞存取點。首先利用離散時間馬可夫鏈對任意傳輸功率的小型細胞存取點來建立電池能量動態模型,推導出速率覆蓋量。接著藉由考量能量採集的能力、細胞聯接偏差和能量採集小細胞的傳輸功率可以推導出網路傳輸量以及能源效率。透過分析網路傳輸量和能源效率,可以找到最佳的傳輸功率以及細胞聯結偏差。透過分析模擬結果,我們指出當所有使用者流量都被卸載到傳輸功率小的能量採集小細胞存取點時,將能夠增強網路傳輸量和能源效率。此外,使用低傳輸功率的小細胞存取點將可達到更高的網路傳輸量,而在能源效率方面,最佳的傳輸功率將會隨著能量採集小細胞密度增加而提高。本論文中考慮包含細胞聯接偏差、小細胞存取點密度和傳輸功率對傳輸效率及能源效率的影響,並提供一個在異質網路中提升頻譜效率以及能源效率的設計架構。

關鍵字: 能量採集、流量卸載、網路傳輸量、能量效率、隨機幾何
In this work, we develop an analytical framework to evaluate the network throughput and energy efficiency in heterogeneous cellular networks (HCNs) with multiple energy harvesting cells. The network consists of a tier of power-grid connected base stations (BSs) and multiple tiers of energy harvesting small cell access points (EH-SAPs). Specifically, we derive the rate coverage after modeling the battery energy dynamic using discrete time Markov chain for energy harvesting (EH)-small cell access points (SAPs) according to an arbitrary transmission power. We then derive the network throughput and the energy efficiency by taking account for the energy harvesting probability, cell association bias, and the transmission power of EH-SAPs. We also explore the optimal transmission power of EH-SAPs and cell association bias in terms of the throughput and the energy efficiency. We show that offloading all traffic of the network to EH-SAPs can enhance the network throughput also the energy efficiency, especially when the transmission power of EH-SAPs is low. Moreover, lower transmission power of EH-SAPs can achieve higher network throughput, but the optimal transmission power of EH-SAPs in terms of network energy efficiency generally increases with the density of EH-SAPs. This research offers insights on the design of spectral- and energy-efficient heterogeneous network including the effects of cell association bias, SAP density, and transmission power of EH-SAP on the network performance.
Abstract i
Contents ii
1 Introduction 1
1.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 System Model 6
2.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Energy Harvesting and Battery Model . . . . . . . . . . . . . . . . . . . . . 8
2.3 Cell Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Rate Coverage 14
4 Performance Analysis 19
4.1 Network Throughput Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Energy Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Insights on Network Throughput and Energy Efficiency . . . . . . . . . . . . 22
5 Numerical Results 26
5.1 Effect of Traffic Offloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Effect of Spatial Density of EH-SAPs . . . . . . . . . . . . . . . . . . . . . . 28
6 Conclusion 34
7 Appendix 35
7.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.4 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
[1] H. Kim, S. Yoo, J. Jung, H. Kim, C. Kang, and M. Rim, “Augmenting small cell with personal area cell for performance improvement,” in 2014 Sixth International Conf. on Ubiquitous and Future Networks (ICUFN), July 2014, pp. 181–186.
[2] J. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” IEEE Pervasive Comput., vol. 4, no. 1, pp. 18–27, Jan. 2005.
[3] J. Andrews, F. Baccelli, and R. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3122–3134, Nov. 2011.
[4] W. C. Cheung, T. Q. S. Quek, and M. Kountouris, “Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 561–574, Apr. 2012.
[5] J. Lee, J. G. Andrews, and D. Hong, “Spectrum-sharing transmission capacity,” IEEE Trans. Wireless Commun., vol. 10, no. 9, pp. 3053–3063, Sep. 2011.
[6] ——, “Spectrum-sharing transmission capacity with interference cancelation,” IEEE Trans. Commun., vol. 61, no. 1, pp. 76–86, Jan. 2013.
[7] H. Dhillon, R. Ganti, F. Baccelli, and J. G. Andrews, “Modeling and analysis of k-tier downlink heterogeneous cellular networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 3,
pp. 550–560, Apr. 2012.
[8] J. Lee and T. Q. S. Quek, “Hybrid full-/half-duplex system analysis in heterogeneous wireless networks,” IEEE Trans. Wireless Commun., 2014, submitted.
[9] Z. Niu, Y. Wu, J. Gong, and Z. Yang, “Cell zooming for cost-efficient green cellular networks,” IEEE Commun. Mag., vol. 48, no. 11, pp. 74 – 79, Nov. 2010.
[10] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi, “A survey on 3gpp heterogeneous networks,” IEEE Commun. Mag., vol. 18, no. 3, pp. 10–21, Jun. 2011.
[11] H.-S. Jo, Y. J. Sang, P. Xia, and J. Andrews, "Heterogeneous cellular networks with flexible cell association: A comprehensive downlink sinr analysis,” IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3484–3495, Oct. 2012.
[12] S. Singh, H. Dhillon, and J. Andrews, “Offloading in heterogeneous networks: Modeling, analysis, and design insights,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 2484–2497, May 2013.
[13] J. F. Kingman, Poisson Process. Oxford University Press, 1993.
[14] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy harvesting communication system,” IEEE Trans. Commun., vol. 60, no. 1, pp. 220–230, Jan. 2012.
[15] O. Ozel, J. Yang, and S. Ulukus, “Optimal broadcast scheduling for an energy harvesting rechargeable transmitter with a finite capacity battery,” IEEE Trans. Wireless
Commun., vol. 11, no. 6, pp. 2193–2203, June 2012.
[16] J. Yang, O. Ozel, and S. Ulukus, “Broadcasting with an energy harvesting rechargeable transmitter,” IEEE Trans. Commun., vol. 11, no. 2, pp. 571–583, Feb. 2012.
[17] H. S. Dhillon, Y. Li, P. Nuggehalli, Z. Pi, and J. G. Andrews, “Fundamentals of heterogeneous cellular networks with energy harvesting,” IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2782–2797, May 2014.
[18] F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless Networks, Volume I Theory.
[19] N. Michelusi, K. Stamatiou, and M. Zorzi, “On optimal transmission policies for energy harvesting devices,” in Proc. Information Theory and Applications Workshop 2012 (ITA’12), Feb. 2012, pp. 249–254.
[20] S. M. Yu and S.-L. Kim, “Downlink capacity and base station density in cellular networks,” in Modeling Optimization in Mobile, Ad Hoc Wireless Networks (WiOpt), 2013 11th International Symposium on, May. 2013, pp. 119–124.
[21] H. S. Dhillon and J. G. Andrews, “Downlink rate distribution in heterogeneous cellular networks under generalized cell selection,” IEEE Wireless Commun. Lett., vol. 3, no. 1, pp. 42–45, Feb. 2014.
[22] Y. S. Soh, T. Q. Quek, M. Kountouris, and H. Shin, “Energy efficient heterogeneous cellular network,” IEEE J. Sel. Areas Commun., vol. 31, no. 5, pp. 840–850, May 2013.
[23] S. Tombaz, P. Monti, K. Wang, A. Vastberg, M. Forzati, and J. Zander, “Impact of backhauling power consumption on the deployment of heterogeneous mobile networks,” in 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011), Dec 2011,
pp. 1–5.
[24] P. Monti, S. Tombaz, L. Wosinska, and J. Zander, “Mobile backhaul in heterogeneous network deployments: Technology options and power consumption,” in 2012 14th International Conference on Transparent Optical Networks (ICTON), July 2012, pp. 1–7.
[25] M. Haenggi and R. K. Ganti, Interference in Large Wireless Networks. NOW: Foundations and Trends in Networking, 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *