帳號:guest(3.135.212.157)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃國平
作者(外文):Huang, Kuo-Ping
論文名稱(中文):Nyquist訊號於多頻帶分頻多工被動光學網路之上傳QPSK同調檢測系統
論文名稱(外文):Nyquist-QPSK for Multi-band WDM-PON Upstream with Coherent Detection
指導教授(中文):馮開明
口試委員(中文):黃元豪
邱奕鵬
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:101064513
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:56
中文關鍵詞:被動光學網路多頻帶
外文關鍵詞:NyquistPONmulti-band
相關次數:
  • 推薦推薦:0
  • 點閱點閱:332
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
  隨著「光纖到家」及4G LTE的發展,被動光學網路已越來越受到重視;如何負荷逐年提高的傳輸量,且減少用戶端的成本一直是重要的研究課題。本論文提出將多頻帶Nyquist-QPSK同調檢測系統運用於被動光學網路的上傳架構中,並透過實驗及模擬系統,分別測試以光學濾波器及編碼方式產生之Nyquist-QPSK訊號,與傳統方波QPSK訊號的差別。根據實驗及模擬結果,我們驗證了Nyquist-QPSK由於頻譜接近方形使實際所占總頻寬較小,故較能抵抗色散;且具有教高的power sensitivity。以上特性配合多頻帶同調檢測的系統架構,可大幅降低客戶端上傳資料時的傳輸功率與頻寬限制。另一方面, Nyquist-QPSK接近方形的頻譜,令其用於多頻帶系統時,可讓子頻帶間緊密相鄰而不互相干擾;所以Nyquist-QPSK不僅利於接收端等化器的設計,還可提升頻譜效益。

Passive optical network (PON) has become more and more popular with the promoting of Fiber to the Home (FTTH) and 4G Long Term Evolution (LTE) network. It is an important issue to reduce the cost of clients for commercial considerations. In this paper, we demonstrated Nyquist-QPSK for multi-band WDM-PON with coherent detection upstream system. We used both optical filtering and MATLAB coding to generate Nyquist-QPSK. Compared with conventional QPSK, Nyquist-QPSK has higher power sensitivity and smaller bandwidth, which make it highly tolerant to chromatic dispersion. On the other hand, rectangular-shape spectrum of Nyquist-QPSK leads to no need of guard bands in multi-band system and low complexity for equalizer designing. The features mentioned above make Nyquist-QPSK suitable for WDM-PON upstream to reduce the cost and improve the spectral efficiency of the systems.
第一章 緒論
1-1 前言
1-2 研究動機與目的
1-3 論文架構
第二章 Nyquist-QPSK於被動光學網路
2-1 被動光學網路簡介
2-2 光學調變方式
2-3 光學檢測方式
2-4 Nyquist訊號簡介
第三章 光學濾波 Nyquist-QPSK多頻帶同調檢測系統
3-1 實驗原理
3-2 實驗架構
3-3 實驗流程
3-4 實驗結果
第四章 編碼產生Nyquist-QPSK於多頻帶同調檢測系統
4-1 原理介紹
4-2 模擬架構
4-3 模擬結果
第五章 結論
[1] TeleGeography. Available: http://www.telegeography.com/
[2] K. C. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Proceeding of the Institution of Electrical Engineers, vol. 133, pp. 191-198, 1986.
[3] H. Nyquist, "Certain topics in telegraph transmission theory," Transactions of the American Institute of Electrical Engineers, vol. 47, pp. 617-644, 1928.
[4] T. Hirooka, P. Wang, P.-Y. Guan, and M. Nakazawa, "Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km," Optics Express, vol. 20, pp. 15001-15007, 2012.
[5] R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, et al., "Real-time OFDM or Nyquist pulse generation - which performs better with limited resources?," Optics Express, vol. 20, pp. B543-B551, 2012.
[6] M. Sieben, J. Conradi, and D. E. Dodds, "Optical single sideband transmission at 10Gb/s using only electrical dispersion compensation," Journal of Lightwave Technology, vol. 17, pp. 1742-1749, 1999.
[7] R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, "Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator," Photonics Technology Letters, vol. 17, pp. 1041-1135, 2005.
[8] A. J. Lowery, "Amplified-spontaneous noise limit of optical OFDM lightwave systems," Optics Express, vol. 16, pp. 860-865, 2008.
[9] Optoplex. Available: http://www.optoplex.com/Index.htm
[10] J. G. Proakis and M. Salehi, Digital Communications, 5 ed.: McGraw-Hill, 2008.
[11] M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, et al., "Optical sinc-shaped Nyquist pulses of exceptional quality," Nature Communications, vol. 4, 2013.
[12] T. Schneider, M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C.-S. Bres, et al., "Optical Nyquist-pulse generation with a power difference to the ideal sinc-shape sequence of < 1%," Proceeding of Photonic Networks, vol. 14, pp. 1-5, 2013.
[13] P. Wang, J. Liu, F. Song, and H. Zhao, "Quasi-distributed temperature measurement for stator bars in large generator via use of Fiber Bragg Gratings," in International Forum on Strategic Technology, 2011, pp. 810-813.
[14] Y. Zhu, H. Qi, and G. Wang, "Temperature characteristic of fiber Bragg grating," in International Conference on Electronic and Mechanical Engineering and Information Technology, 2011, pp. 4020-4022.
[15] Alnair Labs. Available: http://www.alnair-labs.com/
[16] R. A. Shafik, S. Rahman, and R. Islam, "On the extended relationships among EVM, BER and SNR as performance metrics," in International Conference on Electrical and Computer Engineering, 2006, pp. 408-411.
[17] G. Lin, Y. Chi, Y. Li, and J. Chen, "Using a L-band weak-resonant-cavity FPLD for subcarrier amplitude pre-leveled 16-QAM-OFDM transmission at 20 Gbit/s," Journal of Lightwave Technology, vol. 31, pp. 1079-1087, 2013.
[18] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, SIGNALS & SYSTEMS, 2008.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *