|
[1] D. Heinz and C.-I. Chang, “Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529–545, Mar. 2001. [2] A. Plaza, P. Martinez, J. Plaza, and R. Perez, “Spatial/spectral analysis of hyperspectral image data,” in Proc. IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, Oct 2003, pp. 298–307. [3] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002. [4] G. Shaw and D. Manolakis, “Signal processing for hyperspectral image exploitation,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12–16, Jan. 2002. [5] D. W. Sun, Hyperspectral Imaging for Food Quality Analysis and Control. Elsevier, 2010. [6] B. Park, W. Windham, K. Lawrence, and D. Smith, “Contaminant classification of poultry hyperspectral imagery using a spectral angle mapper algorithm,” Biosystems Engineering, vol. 96, no. 3, pp. 323 – 333, 2007. [7] C.-I. Chang and Q. Du, “Estimation of number of spectrally distinct signal sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608–619, Mar. 2004. [8] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace identification,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435–2445, 2008. [9] A. Ambikapathi, T.-H. Chan, C.-Y. Chi, and K. Keizer, “Hyperspectral data geometry-based estimation of number of endmembers using p-norm-based pure pixel identification algorithm,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2753–2769, 2013. [10] M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data,” in Proc. SPIE Conf. Imaging Spectrometry, Pasadena, CA, Oct. 1999, pp. 266–275. [11] J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping target signatures via partial unmixing of AVIRIS data,” in Proc. Summ. JPL Airborne Earth Sci. Workshop, vol. 1, Pasadena, CA, Dec. 9-14, 1995, pp. 23–26. [12] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component analysis: A fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005. [13] M. D. Craig, “Minimum-volume transforms for remotely sensed data,” IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542–552, May 1994. [14] L. Miao and H. Qi, “Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765–777, 2007. [15] T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, “A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing,” IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418–4432, 2009. [16] C.-H. Lin, C.-Y. Chi, Y.-H. Wang, and T.-H. Chan, “A fast hyperplane-based minimum-volume enclosing simplex algorithm for blind hyperspectral unmixing,” accepted as a regular paper in IEEE Trans. Signal Processing, Apr. 2015. [17] G. Strang, Introduction to Linear Algebra, 3rd ed. Wellesley-Cambridge Press, 2003. [18] C. Lawson and R. Hanson, Solving Least Squares Problems, 3rd ed. Prentice- Hall, 1974. [19] V. Franc, “Optimization Algorithms for Kernel Methods,” Ph.D. dissertation, Czech Technical University, 2005. [20] R. Heylen, D. Burazerovic, and P. Scheunders, “Fully constrained least squares spectral unmixing by simplex projection,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4112–4122, Nov 2011. [21] P. Honeine and C. Richard, “Geometric unmixing of large hyperspectral images: A barycentric coordinate approach,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2185–2195, June 2012. [22] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined convex programming,” http://cvxr.com/cvx, 2008. [23] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11-12, pp. 625–653, 1999. [24] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, 2004. [25] W. Cheney and D. Kincaid, Linear Algebra: Theory and Applications. Jone and Bartlett Learning, 2009. [26] D. Kincaid andW. Cheney, Numerical Analysis: Mathematics of Scientific Com- puting, 3rd ed. American Mathematical Society, 2002. [27] S. Friedberg, A. Insel, and L. Spence, Linear Algebra, 4th ed. Prentice Hall, Upper Saddle River, NJ, 2003. [28] V. Franc and V. Hlavac, “Statistical pattern recognition toolbox,” 2013. [Online]. Available: http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html [29] R. Clark, G. Swayze, R. Wise, E. Livo, T. Hoefen, R. Kokaly, and S. Sutley, “USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231,” 2007. [Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06 [30] B. A. Frigyik, A. Kapila, and M. R. Gupta, “Introduction to the Dirichlet distribution and related processes,” Tech. Rep., Department of Electrical Engineering, University of Washington, Seattle, 2010. [Online]. Available: http://www.semanticsearchart.com/downloads/UWEETR-2010-0006.pdf [31] M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, “Total variation spatial regularization for sparse hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484–4502, Nov 2012. [32] J. Chen, C. Richard, and P. Honeine, “Nonlinear estimation of material abundances in hyperspectral images with ℓ1-norm spatial regularization,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2654–2665, May 2014. [33] AVIRIS Free Standard Data Products. [Online]. Available: http://aviris.jpl. nasa.gov/html/aviris.freedata.html [34] L. Miao and H. Qi, “Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765–777, 2007. [35] G. Swayze, R. Clark, S. Sutley, and A. Gallagher, “Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada,” in Proc. Summ. 4th Annu. JPL Airborne Geosci. Workshop, vol. 2, 1992, pp. 47–49. [36] G. Swayze, “The hydrothermal and structural history of the Cuprite Mining District, southwestern Nevada: An integrated geological and geophysical approach,” Ph.D. dissertation, University of Colorado, Boulder, 1997. [37] N. Dobigeon, J.-Y. Tourneret, and C.-I. Chang, “Semi-supervised linear spectral unmixing using a hierarchical bayesian model for hyperspectral imagery,” IEEE Trans. Signal Process, vol. 56, no. 7, pp. 2684–2695, July 2008. [38] E. Christophe, D. Leger, and C. Mailhes, “Quality criteria benchmark for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 9, pp. 2103–2114, Sept 2005. [39] N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. Hero, “Joint bayesian endmember extraction and linear unmixing for hyperspectral imagery,” IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355–4368, Nov 2009. [40] N. Dobigeon, J.-Y. Tourneret, C. Richard, J. Bermudez, S. McLaughlin, and A. Hero, “Nonlinear unmixing of hyperspectral images: Models and algorithms,” IEEE Trans. Signal Process, vol. 31, no. 1, pp. 82–94, Jan 2014. [41] M. Kamruzzaman, D. Barbin, G. ElMasry, D.-W. Sun, and P. Allen, “Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat,” Innovative Food Science and Emerging Technologies, vol. 16, pp. 316–325, 2012.
|