帳號:guest(18.217.147.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭智仁
論文名稱(中文):氮化銦感測器對肝病氣體及干擾氣體影響之研究
論文名稱(外文):Breath Gas Response to Liver Malfunction with Consideration of Non-correlated Gases on InN Sensor
指導教授(中文):葉哲良
口試委員(中文):何明志
果尚志
王玉麟
曾宇鳳
黃國政
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063701
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:氮化銦氣體感測器氨氣二甲基硫
相關次數:
  • 推薦推薦:0
  • 點閱點閱:884
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肝臟是人體內重要的代謝器官,飲食中攝入的養分通過消化系統後,會在腸道中被細菌分解並且產生具揮發性的氣體。在肝功能健全的人身上,這些經由代謝而產生的氣體會被肝臟轉化成尿素進入腎臟系統排出,反之則會在體內累積大量具揮發性的氣體,影響到其它器官運作並且導致病情惡化。
由於肝臟本身並沒有痛覺神經,僅表面上少數的神經支配痛覺,因此當肝臟內部產生病變時,不會有特殊的徵兆使患者感覺到疼痛與不適,直到病程進入晚期黃疸、食慾不振等症狀陸續出現時才就醫大多都已相當嚴重。本研究使用氮化銦氣體感測器來追蹤肝功能狀況,然而人體呼出的氣體中有 250 多種不同的氣體,因此事先推導出一反應速率因子,將揮發性氣體與感測層產生反應的活化能與呼氣濃度代入方程式中,各別計算每項揮發性氣體分子對氮化銦反應的速率強度,目的是為了找出使用氮化銦氣體感測器量測肝病氣體(氨氣)時的主要干擾氣體。此方法結合了阿瑞尼士方程式(Arrhenius equation)與化學反應速率中的重要參數,同時討論了氣體濃度與活化能對氮化銦感測層所造成的影響,將實驗測得之氣體活化能參數與氣體濃度代入該反應速率因子方程式中,可計算出氣體對氮化銦反應速率強度並找出主要的干擾氣體為丙酮與異戊二烯,其中又以丙酮氣體所帶來的影響較大。因此,本研究設計一氣體排除實驗,將預先配置好的混合氣體(0.7 ppm NH3+ 0.7 ppm C3H6O in N2 於1L的集氣袋中)串聯至過濾系統,得到混合氣體經過 10 c.c. PDMS 矽油過濾後,丙酮氣體的濃度從原先的 0.778 ppm 減少至 0.474 ppm,減少了約 40% 的丙酮濃度,而氨氣濃度則另外經由離子層析儀分析得到混合氣體經 PDMS 矽油前後濃度保持不變,本研究藉由非極性 PDMS 純矽油過濾系統大幅降低了主要干擾氣體(丙酮)的濃度。
It has been known for a long time that electrical resistance of a semiconductor is very sensitive to the presence of gas in its volume or at the surface. Measurement of breath NH3 is of interest in clinical applications as it can be used as a measure of liver functions. We have developed a III-V semiconductor conductivity InN sensor to measure NH3 in human breath. As mixture gas passes over the InN sensing layer, the film collects NH3 and the conductivity (measured by the multi-meter) increases accordingly. However, there are around 250 kinds of VOCs in our breath, so the issue of selectivity is very important. In this research, methods for selectivity improvement of semiconductor gas sensors are presented. Our groups define a reaction factor to compare the reaction rate of these VOCs gases and find out the noisy breath gas. In this step, two parameters, gas concentration and the activation energy took into consider. According to the result, acetone and isoprene are the noisy breath gas present in the breath of all individuals and are the major breath hydrocarbon in healthy people. Therefore, we set up a filter system to exclude the acetone by adding non-polar solvent which called polydimethylsiloxane (PDMS). PDMS is silicon oil, which can react with acetone, the result from Societe Generale de Surveillance (SGS) shows 10 c.c. PDMS silicon oil can decrease almost 40% acetone (from 0.778 ppm to 0.474 ppm) in the mixture. In addition, PDMS silicon oil will not react with target gas NH3 and shows a good way to exclude acetone from the mixture.
誌謝 I
摘要 II
ABSTRACT III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1研究背景 1
1.2肝臟疾病概述 2
1.3肝病檢測技術 3
1.3.1酵素分析法 3
1.3.2肝穿刺切片 5
1.3.3氣相層析儀 6
1.3.4氨氣感測器 8
1.4研究動機與目標 11
第二章 文獻回顧 12
2.1氨氣感測器 12
2.1.1電阻式感測器 12
2.1.2電晶體式感測器 13
2.1.3專利搜尋 14
2.1.4市面產品 16
2.2氮化銦薄膜之電子特性 18
2.3氮化銦氣體感測器之應用 20
第三章 理論分析 28
3.1元件反應機制 28
3.2氣體反應速率 31
3.3活化能 32
3.4氣體反應速率強度 33
第四章 實驗設計與元件製作 34
4.1實驗規劃 34
4.2儀器設置 35
4.2.1氣體感測之量化指標 36
4.2.2分析方法和參與值設定 36
4.3氮化銦氣體感測器 39
4.3.1元件設計 39
4.3.2加熱器設計 40
4.4氮化銦感測器製作流程 40
4.4氣體感測元件組裝 42
第五章 結果與討論 43
5.1氮化銦感測器應用於氨氣感測 43
5.2呼氣中氣體的濃度 45
5.3氣體反應強度 49
5.4活化能量測 53
5.5氣體對氮化銦的反應強度 59
5.6氣體排除實驗 62
第六章 結論 66
第七章 未來工作 67
參考文獻 68
[1] W. Miekisch, J. K. Schubert, and G. F. E. Noeldge-Schomburg, "Diagnostic Potential of Breath Analysis - Focus on Volatile Organic Compounds," Clinica Chimica Acta, vol. 347, pp. 25-39, 2004.
[2] C. S. J. Probert, I. Ahmed, T. Khalid, E. Johnson, S. Smith, and N. Ratcliffe, "Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointestinal and Liver Diseases," Journal of Gastrointestinal and Liver Diseases, vol. 18, pp. 337-343, 2009.
[3] H. Kaji, M. Hisamura, N. Saito, and M. Murao, "Evaluation of Volatile Sulfur-Compounds in Expired Alveolar Gas in Patients with Liver-Cirrhosis," Clinica Chimica Acta, vol. 85, pp. 279-284, 1978.
[4] H. C. Hao, M. C. Chiang, S.C.Liu, C. Y. Hsiao, C. M. Yang, K. T. Tang, et al., "Improved Surface Acoustic Wave Sensor For Low Concentration Ammonia/Methane Mixture Gases," Miniaturized Systems for Chemistry and Life Sciences, 2014.
[5] S. Davies, P. Spanel, and D. Smith, "Quantitative Analysis of Ammonia on the Breath of Patients in End-stage Renal Failure," Kidney International, vol. 52, pp. 223-228, 1997.
[6] NationalCancer Institute, "SEER Cancer Statics Review," 1975-2011.
[7] 劉文俊,解讀健康報告之基本態度,2013。
[8] E. Cholongitas, G. V. Papatheodoridis, M. Vangeli, N. Terreni, D. Patch, A. K. Burroughs, "Systematic review: The model for end-stage liver disease--should it replace Child-Pugh's classification for assessing prognosis in cirrhosis?," Alimentary pharmacology & therapeutics, vol. 22, pp.1079-1089, 2005.
[9] D. C. Dugdaleand Y. B. Chen, "Liver Biopsy," ADAM, Inc., 2011.
[10] L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, "Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography," Proceedings of the National Academy of Sciences of the United States of America, vol. 68, pp. 2374-2376, 1971.
[11] M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, and R. N. Cataneo, "Variation in Volatile Organic Compounds in the Breath of Normal Humans," Journal of Chromatography B, vol. 729, pp. 75-88, 1999.
[12] J. F. Periago, C. Prado, I. Ibarra, and J. Tortosa, "Application of Thermal-Desorption to the Biological Monitoring of Organic-Compounds in Exhaled Breath," Journal of Chromatography A, vol. 657, pp. 147-153, 1993.
[13] J. Krugers, "Instrumentation in Gas Chromatography," 1968.
[14] P. Jappinen, J. Kangas, L. Silakoski, and H. Savolainen, "Volatile Metabolites in Occupational Exposure to Organic Sulfur-Compounds," Archives of Toxicology, vol. 67, pp. 104-106, 1993.
[15] S. S. Sehnert, L. Jiang, J. F. Burdick, and T. H. Risby, "Breath Biomarkers for Detection of Human Liver Diseases: Preliminary Study," Biomarkers, vol. 7, pp. 174-187, 2002.
[16] L. S. Jiang, H. K. Jun, Y. S. Hoh, J. O. Lim, D. D. Lee, and J. S. Huh, "Sensing Characteristics of Polypyrrole-Poly(vinyl alcohol) Methanol Sensors Prepared by In Situ Vapor State Polymerization," Sensors and Actuators B-Chemical, vol. 105, pp. 132-137, 2005.
[17] H. T. Nagle, R. Gutierrez-Osuna, and S. S. Schiffman, "The How and Why of Electronic Noses," Ieee Spectrum, vol. 35, pp. 22-34, 1998.
[18] I. Lundstrom, "Why Bother About Gas-sensitive Field-effect Devices?," Sensors and Actuators a-Physical, vol. 56, pp. 75-82, 1996.
[19] 高崑維,「人體呼吸氣體濃度感測器」專利調查與分析,2014。
[20] P. C. Shih, P. S. Jiang, W. H. Kuo, and Y. J. Lin, "Method and Device for Measuring Sulfur Compound and/or Ammonia Based on Sensory Unit Coated with At Least One Novel Peptide," US 7267989 B2, 2007.
[21] T. H. Risby, S. Sehnert, L. Jiang, and J. F. Burdick, "Volatile Biomarkers for Analysis of Hepatic Disorders," US 6248078 B1, 2001.
[22] A. S. Modak, "Regulatory issues on breath tests and updates of recent advances on [C-13]-breath tests," Journal of Breath Research, vol. 7, pp. 037103, 2013.
[23] M. Shirasu and K. Touhara, "The Scent of Disease: Volatile Organic Compounds of the Human Body Relatedto Disease and Disorder," Journal of Biochemistry, vol. 150, pp. 257-266, 2011.
[24] C. S. Probert, I. A. T. K. E. Johnson, S. Smith, and N. Ratcliffe, "Volatile Organic Compounds as Diagnostic Biomarkers in Gastrointestinal and Liver Diseases," Journal of Gastrointestin Liver Disease, vol. 18, pp. 337-343, 2009.
[25] C. L. Whittle, S. Fakharzadeh, J. Eades, and G. Preti, "Human Breath Odors and Their Use in Diagnosis," Annals of the New York Academy of Sciences, vol. 1098, pp. 252-266, 2007.
[26] B. Buszewski, M. Kesy, T. Ligor, and A. Amann, "Human Exhaled Air Analytics: Biomarkers of Diseases," Biomedical Chromatogrphy, vol. 21, pp. 553-566, 2007.
[27] A. P. F. Turner and N. Magan, "Electronic Noses and Disease Diagnostics," Nature Reviews Microbiology, vol. 2, pp. 161-166, 2004.
[28] W. H. Cheng and W. J. Lee, "Technology Development in Breath Microanalysis for Clinical Diagnosis," Journal of Laboratory and Clinical Medicine, vol. 133, pp. 218-228, 1999.
[29] S. V. d. Velde, F. Nevens, P. V. Hee, D. v. Steenberghe, and M. Quirynen, "GC-MS Analysis of Breath Odor Compounds in Liver Patients," Journal of Chromatogr B, vol. 875, pp. 334-348, 2008.
[30] S. V. d. Velde, M. Quirynen, P. V. Hee, and D. V. Steenberghe, "Halitosis Associated Volatiles in Breath of Healthy Subjects," Journal of Chromatogr B, vol. 853, pp. 54-61, 2007.
[31] B. Timmer, W. Olthuis, and A. v. d. Berg, "Ammonia sensors and their applications - a review," Sensors and Actuators B-Chemical, vol. 107, pp. 666-677, 2005.
[32] Figaro USA. Inc.TGS-826.
[33] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, "Indium nitride (InN): A review on growth, characterization, and properties," Journal of Applied Physics, vol. 94, pp. 2779-2808, 2003.
[34] H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, "Surface Charge Accumulation of InN Films Grown by Molecular-beam Epitaxy," Applied Physics Letters, vol. 82, pp. 1736-1738, 2003.
[35] P. F. Guo and H. B. Pan, "Selectivity of Ti-doped In2O3 Ceramics as an Ammonia Sensor," Sensors and Actuators B-Chemical, vol. 114, pp. 762-767, 2006.
[36] C. H. Deng, J. Zhang, X. F. Yu, W. Zhang, and X. M. Zhang, "Determination of Acetone in Human Breath by Gas Chromatography-mass Spectrometry and Solid-phase Microextraction with on-fiber Derivatization," Journal of Chromatography B, vol. 810, pp. 269-275, 2004.
[37] 許銘哲,次ppm 級丙酮氣體氮化銦薄膜感測器,2011。
[38] 胡萬柏,用於次ppm級氨氣偵測的超薄氮化銦感測器,2012。
[39] 楊富翔,以五環素與白金提升氮化銦對氨氣選擇性,2013。
[40] N. Barsan and U. Weimar, "Conduction Model of Metal Oxide Gas Sensors," Journal of Electroceramics, vol. 7, pp. 143-167, 2001.
[41] F. Hellegouarc'h, F. Arefi-Khonsari, R. Planade, and J. Amouroux, "PECVD Prepared SnO2 Thin Films for Ethanol Sensors," Sensors and Actuators B-Chemical, vol. 73, pp. 27-34, 2001.
[42] M. E. Franke, T. J. Koplin, and U. Simon, "Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?," Small, vol. 2, pp. 36-50, 2006.
[43] R. B. Cooper, G. N. Advani, and A. G. Jordan, "Gas Sensing Mechanism in SnO2 Thin Films," Journal of Electronic Materials, vol. 10, pp. 455-472, 1981.
[44] M. F. Wu, S. Q. Zhou, A. Vantomme, Y. Huang, H. Wang, and H. Yang, "High-precision Determination of Lattice Constants and Structural Characterization of InN Thin Films," Journal of Vacuum Science & Technology A, vol. 24, pp. 275-279, 2006.
[45] B. Buszewski and T. L. J. Rudnicka, "Clinical Application of SPME: Analysis of VOCs in Exhaled Breath as Cancer Biomarkers," Reporter, vol. 53, pp. 17-18, 2013.
[46] P. Mayes, R. Murray, D. Granner, and V. Rodwell, "Harper's Illustrated Biochemistry," Biologic Oxidation. McGraw‐Hill Companies Inc., pp. 130-136, 2000.
[47] C. H. Deng, J. Zhang, X. F. Yu, W. Zhang, and X. M. Zhang, "Determination of Acetone in Human Breath by Gas Chromatography-Mass Spectrometry and Solid-Phase Microextraction with on-fiber Derivatization," Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, vol. 810, pp. 269-275, 2004.
[48] S. Davies, P. Spanel, and D. Smith, "A new 'online' method to measure increased exhaled isoprene in end-stage renal failure," Nephrology Dialysis Transplantation, vol. 16, pp. 836-839, 2001.
[49] C. Wang and P. Sahay, "Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits," Sensors, 2009.
[50] S. Mendis, P. A. Sobotka, and D. E. Euler, "Pentane and Isoprene in Expired Air from Humans - Gas-Chromatographic Analysis of Single-Breath," Clinical Chemistry, vol. 40, pp. 1485-1488, 1994.
[51] M. Salmeron and G. A. Somorjai, "Adsorption and Bonding of Butane and Pentane on the Pt(111) Crystal-Surfaces - Effects of Oxygen Treatments and Deuterium Pre-Adsorption," Journal of Physical Chemistry, vol. 85, pp. 3835-3840, 1981.
[52] M. Yang and G. A. Somorjai, "Adsorption and Reactions of C6 Hydrocarbons at High Pressures on Pt(111) Single-Crystal Surfaces Studied by Sum Frequency Generation Vibrational Spectroscopy: Mechanisms of Isomerization and Dehydrocyclization of n-Hexane," Journal of American Chemical Society, vol. 126, pp. 7698-7708, 2014.
[53] J. Otomo, S. Nishida, H. Takahashi, and H. Nagamoto, "Electro-oxidation of methanol and ethanol on carbon-supported Pt catalyst at intermediate temperature," Journal of Electroanalytical Chemistry, vol. 615, pp. 84-90, 2008.
[54] S. D. Lin and M. A. Vannice, "Hydrogenation of Aromatic Hydrocarbons Over Supported Pt Catalysis," Journal of Catalysus, vol. 143, pp. 554-562, 1993.
[55] D. Vassilakis, E. Margot, C. M. Pradier, and Y. Berthier, "Hydrogenation of Isoprene on Pt(111)," Journul of Molecular Catalysis, vol. 61, pp. 41-50, 1990.
[56] U. K. Singh and M. A. Vannice, "Liquid-phase hydrogenation of citral over Pt/SiO2 catalysts 1. Temperature effects on activity and selectivity," Journal of Catalysis, vol. 191, pp. 165-180, 2000.
[57] K. W. Kao, M. C. Hsu, Y. H. Chang, S. Gwo, and J. A. Yeh, "A Sub-ppm Acetone Gas Sensor for Diabetes Detection Using 10 nm Thick Ultrathin InN FETs," Sensors, vol. 12, pp. 7157-7168, 2012.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *