帳號:guest(3.144.172.125)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳彥名
作者(外文):Chen, Yen-Ming
論文名稱(中文):垂直式有機電晶體 之製程改善
論文名稱(外文):The improvement of vertical organic transistor process
指導教授(中文):洪勝富
指導教授(外文):Horng, Sheng-Fu
口試委員(中文):洪勝富
孟心飛
冉曉雯
趙宇強
口試委員(外文):Sheng-Fu Horng
Hsin-Fei Meng
Hsiao-Wen Zan
Yu-Chiang Chao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063564
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:59
中文關鍵詞:空間電荷限制電晶體膠體微影刮刀塗佈
相關次數:
  • 推薦推薦:0
  • 點閱點閱:432
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,軟性電子技術是很熱門的研究題材,本實驗室所開發的空間電荷限制電晶體(space-charge-limited transistor, SCLT)即是其中之一,SCLT本身具有低成本、可撓性、低操作電壓、高輸出電流等優勢,適合做為顯示器(如主動式有機發光顯示器、電子書)的驅動背板,因此,開發SCLT大面積化的製程就顯得重要。SCLT的開關特性是由基極的金屬網狀結構所控制的,而金屬網狀結構是利用非緊密堆積的奈米球做為蒸鍍遮罩(又稱膠體微影技術)所完成的。故本論文的主軸即是開發出穩定的大面積奈米球沉積製程,我們在實驗上是使用刮刀塗佈來達到大面積化的目的。將此製程方法應用在SCLT製程上,亦在大面積上獲得多個電流開關比達一萬以上的SCLT,表示奈米球分佈是均勻的。與其他奈米微影技術(如光學微影、電子束微影、奈米轉印微影)相較,此方法同時具有低成本、可大面積化、製程簡單的優勢。
Flexible electronics technology is a popular research topic recently. One of that is space-charge-limited-transistor(SCLT) which have been developed in our lab for past five years. SCLT contains many advantages such as low cost, flexibility, low operation voltage and high output current, and is suited to the backplane of display. Therefore, It is important to develop the SCLT process of large area. The switching characteristic of SCLT is controlled by the metallic nano-grid using non-close-packed nanospheres as shadow mask(called colloidal lithography) when evaporating metal Al and sequentially lifting off the nanospheres covered with Al. Thus, the topic of the thesis is to develop the stable process of large-area nanospheres deposition. Using blade-coating method, we successfully demonstrate the uniform distribution of nanospheres on large-area substrate. Applying this method on the fabrication of metallic nano-grid in SCLT, We also obtain many SCLTs that on/off current ratio are up to 104 on large area. It means the distribution of nanospheres on large-area substrate is uniform. Comparing with other lithography method like optical lithography, e-beam lithography, and nanoimprint, this method obtains the superiority: low cost, large-area process, easy process.
摘要………………………………………………....…..I
Abstract…………………..……………..………….….III
目錄……………………………………………............VI
圖目錄…………………………………………..…...VIII
Chapter 1 緒論…………………………………….…....1
1-1研究背景……………………………………………………..…...1
1-2研究動機………………………………………………………….5
1-3論文架構……………………………………………………….....8
Chapter 2有機材料簡介與空間電荷限制電晶 體原理…………………...….………...…9
2-1有機材料簡介…………………………………………….……..9
2-1-1主動層材料……………………………………....….....……10
2-1-2絕緣層材料………………………………………….………14
2-2金屬與半導體接面…………..………………………....…..…..15
2-3有機共軛高分子載子傳輸理論………….…………………….19
2-3-1塊材限制與空間電荷限制電流理論……..…………………20
2-3-2離子發射理論與穿隧效應…………………………………..23
2-4 空間電荷限制電晶體結構與原理..………………….………..27
Chapter 3 大面積刮刀塗佈奈米球與空間電荷限制電 晶體實驗流程……………………………31
3-1大面積刮刀塗佈奈米球製程………………………….…….…32
3-1-1製程設備……………………………………………….........32
3-1-2製程流程…………………………………………………......33
3-2大面積空間電荷限制電晶體製程………………………….….37
Chapter 4 實驗結果與討論………………………….44
4-1刮刀塗佈奈米球前期成果……………………………….…….44
4-2大面積刮刀塗佈奈米球………………………………….…….46
4-3大面積刮刀塗佈奈米球於軟性基板…………………………..49
4-4應用於大面積空間電荷制電晶體之電性分析………………..50
Chapter 5 總結與未來展望………………………….54
參考文獻……………………………………………....57
[1]H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang and .J.Heeger
J. Chem. Soc. Chem. Commun., vol.16, pp.578(1977)
[2] Y.-C. Chao, H.-F. Meng, and S.-F. Horng, “Polymer space-charge-limited transistor,”Appl. Phys. Lett., vol. 88, no. 22, p. 223510(2006)
[3] Y.-C. Chao, H.-F. Meng, S.-F. Horng, and C.-S. Hsu, “High-performance
solution-processed polymer space-charge-limited transistor,” Organic Electronics,
vol. 9, no. 3, pp. 310–316(2008)
[4] Y.-C. Chao, Y.-C. Lin, M.-Z. Dai, H.-W. Zan, and H.-F. Meng, “Reduced hole
injection barrier for achieving ultralow voltage polymer space-charge-limited
transistor with a high on/off current ratio,” Appl. Phys. Lett., vol. 95, no. 20, p.
203305(2009)
[5] Y.-C. Chao, H.-K. Tsai, H.-W. Zan, Y.-H. Hsu, H.-F. Meng, and S.-F. Horng,
“Enhancement-mode polymer space-charge-limited transistor with low switching
swing of 96 mV/decade,” Appl. Phys. Lett., vol. 98, no. 22, p. 223303(2011)
[6] Y.-C. Chao, M.-C. Ku, W.-W. Tsai, H.-W. Zan, H.-F. Meng, H.-K. Tsai, and S.-F.
Horng, “Polymer space-charge-limited transistor as a solid-state vacuum tube triode,”
Appl. Phys. Lett., vol. 97, no. 22, p. 223307(2010)
[7] H.-W. Zan, Y.-H. Hsu, H.-F. Meng, C.-H. Huang, Y.-T. Tao, and W.-W. Tsai, “High output current in vertical polymer space-charge-limited transistor induced by
self-assembled monolayer,” Appl. Phys. Lett., vol. 101, no. 9, p. 093307(2012)
[8] H. Kobayashi, N. Moronuki, and A. Kaneko, “Self-assembly of fine particles
applied to the production of antireflective surfaces,” International Journal of
Precision Engineering and Manufacturing, vol. 9, pp. 25-29(2008)
[9] F. Pan, J. Y. Zhang, C. Cai, and T. M. Wang, “Rapid fabrication of large-area
colloidal crystal monolayers by a vortical surface method,” Langmuir, vol. 22,
pp. 7101-7104(2006)
[10] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned colloidal deposition
controlled by electrostatic and capillary forces,” Physical Review Letters, vol.
84, pp. 2997-3000(2000)
[11] D. Y. Wang and H. Mohwald, “Rapid fabrication of binary colloidal crystals by
stepwise spin-coating,” Advanced Materials, vol. 16, pp. 244-247(2004)
[12] Yen-Chu Chao, Kai-Ruei Wang, Hsin-Fei Meng, Hsiao-Wen Zan, and Yung-Hsuan Hsu, “Large-area non-close-packed nano-sphere deposition by blade coating for vertical space-charge-limited transistor,” Organic Electronics, vol. 13, pp. 3177-3182(2012)
[13 ] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W.Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, “Microstructure–mobility correlation in self-organised, conjugated polymer field-effect transistors,” Synth. Met., vol. 129, pp. 111–112(2000)
[14] N. F. Mott and D. Gurney. Electronic Processes in Ionic Crystals. Oxford
[15] Ming-Zhi Dai, Yi-Lo Lin, Hung-Cheng Lin, Hsiao-Wen Zan, Kai-Ting Chang, Hsin-Fei Meng, Jiunn-Wang Liao, May-Jywan Tsai, and Henrich Cheng, “Highly Sensitive Ammonia Sensor with Organic Vertical Nanojunctions for Noninvasive Detection of Hepatic Injury,” Analytical Chemistry, vol. 85, pp. 3110-3117(2013)
[16] Hsiao-Wen Zan, Wu-Wei Tsai, Chia-Hsin-Chen, and Chuang-Chuang Tsai, “Effective mobility enhancement by using nanometer dot doping in amorphous IGZO thin-film transistors,” Advanced Materials, vol. 23, pp. 4237-4242(2011)
[17] M. Aryal, K. Trivedi, and W. C. Hu,Acs Nano, vol.3, pp.3085(2009)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *