|
[1] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. [2] R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett., vol. 94, no. 24, p. 243114, 2009. [3] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N.Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, no. 3, pp. 902–907, 2008. [4] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett., vol. 8, no. 10, pp. 3498–3502, 2008. [5] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp. 183–191, 2007. [6] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology, vol. 5, no. 8, pp. 574–578, 2010. [7] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, “Graphene-based supercapacitor with an ultrahigh energy density,” Nano Lett., vol. 10, no. 12, pp. 4863–4868, 2010. [8] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev., vol. 74, no. 2, p. 230, 1948. [9] “Transistor count,” http://en.wikipedia.org/wiki/Transistor_count/. [10] W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, “Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller,” J. Appl. Phys., vol. 97, no. 2, p. 023706, 2005. [11] “1997 national technology roadmap for semiconductors,” http://www.rennes.supelec.fr/ren/perso/gtourneu/enseignement/roadmap97.pdf. [12] D. Yang, C. Gan, P. Chidambaram, G. Nallapadi, J. Zhu, S. Song, J. Xu, and G. Yeap, “Technology-design-manufacturing co-optimization for advanced mobile socs,” in SPIE Advanced Lithography, pp. 90530N–90530N, International Society for Optics and Photonics, 2014. [13] “International technology road for semiconductors,” http://www.itrs.net/. [14] A. Christou, Electromigration and electronic device degradation. Wiley-Interscience, 1994. [15] Y. Nishi and R. Doering, Handbook of semiconductor manufacturing technology. CRC Press, 2000. [16] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene copper electroplating for chip interconnections,” IBM Journal of Research and Development, vol. 42, no. 5, pp. 567–574, 1998. [17] J. D. Plummer, “Silicon vlsi technology: fundamentals, practice, and modeling,” p. 570, 2000. [18] H. Wendt, H. Cerva, V. Lehmann, and W. Pamler, “Impact of copper contamination on the quality of silicon oxides,” Journal of Applied Physics, vol. 65, no. 6, pp. 2402–2405, 1989. [19] M. Setton, J. Van der Spiegel, and B. Rothman, “Copper silicide formation by rapid thermal processing and induced room-temperature si oxide growth,” Appl. Phys. Lett., vol. 57, no. 4, pp. 357–359, 1990. [20] J. R. Black, “Electromigration¡xa brief survey and some recent results,” Electron Devices, IEEE Transactions on, vol. 16, no. 4, pp. 338–347, 1969. [21] S. Holzer, “3.7.1 electro-migration,” http:// www.iue.tuwien.ac.at/phd/holzer/node52.html. [22] J. Lloyd, J. Clemens, and R. Snede, “Copper metallization reliability,” Microelectronics Reliability, vol. 39, no. 11, pp. 1595–1602, 1999. [23] D. Kwon, H. Park, and C. Lee, “Electromigration resistance-related microstructural change with rapid thermal annealing of electroplated copper films,” Thin Solid Films, vol. 475, no. 1, pp. 58–62, 2005. [24] I. Blech, “Electromigration in thin aluminum films on titanium nitride,” J. Appl. Phys., vol. 47, no. 4, pp. 1203–1208, 1976. [25] I. Blech and E. Kinsbron, “Electromigration in thin gold films on molybdenum surfaces,” Thin Solid Films, vol. 25, no. 2, pp. 327–334, 1975. [26] M. Shatzkes and J. Lloyd, “A model for conductor failure considering diffusion concurrently with electromigration resulting in a current exponent of 2,” J. Appl. Phys., vol. 59, no. 11, pp. 3890–3893, 1986. [27] J. Clement and J. Lloyd, “Numerical investigations of the electromigration boundary value problem,” J. Appl. Phys., vol. 71, no. 4, pp. 1729–1731, 1992. [28] C. M. Tan and A. Roy, “Electromigration in ulsi interconnects,” Materials Science and Engineering: R: Reports, vol. 58, no. 1, pp. 1–75, 2007. [29] C.-K. Hu, L. Gignac, R. Rosenberg, B. Herbst, S. Smith, J. Rubino, D. Canaperi, S. Chen, S. Seo, and D. Restaino, “Atom motion of cu and co in cu damascene lines with a cowp cap,” Appl. Phys. Lett., vol. 84, no. 24, pp. 4986–4988, 2004. [30] T. Nogami, C. Penny, A. Madan, C. Parks, J. Li, P. Flaitz, A. Uedono, S. Chiang, M. He, A. Simon, et al., “Electromigration extendibility of cu (mn) alloy-seed interconnects, and understanding the fundamentals,” in Electron Devices Meeting (IEDM), 2012 IEEE International, pp. 33–7, IEEE, 2012. [31] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, no. 9, p. 622, 1947. [32] J. Yao, Y. Sun, M. Yang, and Y. Duan, “Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine,” J. Mater. Chem., vol. 22, no. 29, pp. 14313–14329, 2012. [33] A. Jorio, M. S. Dresselhaus, R. Saito, and G. Dresselhaus, Raman spectroscopy in graphene related systems. John Wiley & Sons, 2010. [34] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol. 473, no. 5, pp. 51–87, 2009. [35] L. Cancado, K. Takai, T. Enoki, M. Endo, Y. Kim, H. Mizusaki, A. Jorio, L. Coelho, R. Magalhaes-Paniago, and M. Pimenta, “General equation for the determination of the crystallite size la of nanographite by raman spectroscopy,” Appl. Phys. Lett., vol. 88, no. 16, pp. 163106–163106, 2006. [36] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, et al., “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, no. 18, p. 187401, 2006. [37] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, et al., “Electronic confinement and coherence in patterned epitaxial graphene,” Science, vol. 312, no. 5777, pp. 1191–1196, 2006. [38] S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene for device applications,” Nano Lett., vol. 7, no. 11, pp. 3394–3398, 2007. [39] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, “Graphene segregated on ni surfaces and transferred to insulators,” Appl. Phys. Lett., vol. 93, no. 11, p. 113103, 2008. [40] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol. 324, no. 5932, pp. 1312–1314, 2009. [41] S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, “Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst,” Nano Lett., vol. 10, no. 10, pp. 4128–4133, 2010. [42] Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, and J. Hou, “Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources,” ACS nano, vol. 5, no. 4, pp. 3385–3390, 2011. [43] X. Wan, K. Chen, D. Liu, J. Chen, Q. Miao, and J. Xu, “High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons,” Chem. Mater., vol. 24, no. 20, pp. 3906–3915, 2012. [44] A. Gurevich, N. Borisov, and G. Milikh, Physics of microwave discharges: artificially ionized regions in the atmosphere. CRC Press, 1997. [45] H. Medina, Y.-C. Lin, C. Jin, C.-C. Lu, C.-H. Yeh, K.-P. Huang, K. Suenaga, J. Robertson, and P.-W. Chiu, “Metal-free growth of nanographene on silicon oxides for transparent conducting applications,” Advanced Functional Materials, vol. 22, no. 10, pp. 2123–2128, 2012. [46] C.-H. Yeh, H. Medina, C.-C. Lu, K.-P. Huang, Z. Liu, K. Suenaga, and P.-W. Chiu, “Scalable graphite/copper bishell composite for high-performance interconnects,” ACS nano, vol. 8, no. 1, pp. 275–282, 2014. [47] K. Chavez and D. Hess, “A novel method of etching copper oxide using acetic acid,” J. Electrochem. Soc., vol. 148, no. 11, pp. G640–G643, 2001. [48] M. Baklanov, D. Shamiryan, Z. Tökei, G. Beyer, T. Conard, S. Vanhaelemeersch, and K. Maex, “Characterization of cu surface cleaning by hydrogen plasma,” Journal of Vacuum Science & Technology B, vol. 19, no. 4, pp. 1201–1211, 2001. [49] Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale, vol. 5, no. 12, pp. 5180–5204, 2013. [50] M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, “Graphene cvd growth on copper and nickel: role of hydrogen in kinetics and structure,” Phys. Chem. Chem. Phys., vol. 13, no. 46, pp. 20836–20843, 2011. [51] M. Yan, K. Tu, A. Vairagar, S. Mhaisalkar, and A. Krishnamoorthy, “A direct measurement of electromigration induced drift velocity in cu dual damascene interconnects,” Microelectronics Reliability, vol. 46, no. 8, pp. 1392–1395, 2006. [52] C.-K. Hu, R. Rosenberg, and K. Lee, “Electromigration path in cu thin-film lines,” Applied Physics Letters, vol. 74, no. 20, pp. 2945–2947, 1999. [53] “Student’s t-test,” https://en.wikipedia.org/wiki/Student’s_t-test. |