帳號:guest(52.15.57.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李奕辰
論文名稱(中文):新穎氮化鋁鎵/氮化鎵發光高電子遷移率電晶體之研製
論文名稱(外文):Novel Light Emitting AlGaN/GaN HEMT
指導教授(中文):黃智方
口試委員(中文):鄭克勇
盧向成
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063542
出版年(民國):103
畢業學年度:103
語文別:英文中文
論文頁數:62
中文關鍵詞:氮化鎵氮化鋁鎵高電子遷移率電晶體發光二極體
相關次數:
  • 推薦推薦:0
  • 點閱點閱:89
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文中,我們成功在矽基板上製作氮化鋁鎵/氮化鎵高電子遷移率電晶體串聯氮化鎵有機發光二極體,實驗的方向主要是利用不同種的p型氮化鎵歐姆接觸,來探討其對於發光以及電性上的影響。
我們用Ni/Au與ITO當p型氮化鎵歐姆接觸皆製作出了水平型絕緣閘雙極電晶體以及高電子遷移率串聯有機發光二極體;在電性方面,當元件通道長度3µm,閘極至源極長度3µm,閘極至汲極長度7µm時,量得汲極飽和電流為333mA/mm,轉移電導值為113.7mS/mm,導通阻抗值為2.34mΩ‧cm2。在崩潰特性的部分,我們利用較厚的緩衝層(4.2µm),減少基板的漏電路徑,並且提升了垂直的耐壓能力;當閘極至汲極長度為60µm時,我們量測到了2821V的最大崩潰電壓值。
在發光元件的部分,我們量測出室溫發射波長為365.5nm而且在高溫時觀察到紅移現象,並利用給予閘極不同之輸入訊號來控制發光的亮暗。
In this thesis, GaN LEDs inherent in AlGaN/GaN HEMTs on a silicon substrate were fabricated. The main topic of this study is to investigate different kinds of p-GaN ohmic contacts and to discuss its optical and electrical influences.
Lateral insulated gate bipolar transistors and GaN LED in series with AlGaN/GaN HEMTs were realized by using Ni/Au and ITO as p-type contacts. For the on-state characteristics, the drain saturation current density and the maximum transconductance (Gm,max) for the device with a 3μm channel length, a 3μm source-to-gate spacing and a 7μm gate-to-drain spacing are 333mA/mm and 113.7mS/mm respectively. And the specific on-resistance is 2.34mΩ‧cm2. For the reverse breakdown characteristics, a thick buffer layer is used to reduce the substrate leakage current and raises the capability of vertical breakdown. The highest breakdown voltage for the device with Lgd=60μm is 2821V.
For optical properties, the wavelength of the emitted light is 365.5nm at room temperature and a red shift is observed at higher temperatures. Switching the light is demonstrated by controlling the gate with an appropriate input signal.
中文摘要 I
Abstract II
Table of Contents III
List of Figures V
List of Tables VII
Chapter 1 Introduction 1
1.1 Foreword 1
1.2 Literature review 3
1.3 Orientation of research and thesis structure 8
1.3.1 Orientation of research 8
1.3.2 Thesis structure 8
Chapter 2 Device Principle and Experiment Design 9
2.1 Introduction of AlGaN/GaN 9
2.1.1 Spontaneous polarization 10
2.1.2 Piezoelectric polarization 11
2.2 Substrate for GaN growth 12
2.3 Device isolation 13
2.4 P-GaN Ohmic contact 14
2.4.1 Metal of p-GaN ohmic 15
2.4.2 Annealing of p-GaN ohmic 17
2.5 ITO 20
2.6 Experiment design 20
2.6.1 Epitaxial structure 20
2.6.2 Experiment design 21
Chapter 3 Fabrication Process 23
3.1 AlGaN/GaN HEMT-LED fabrication process 23
3.2 Ni/Au process 24
3.2.1 Metal alignment key and test TLM pattern (Mask1) 24
3.2.2 P-GaN etching (Mask2) 25
3.2.3 Source ohmic contact (Mask3) 27
3.2.4 Device isolation (Mask4) 27
3.2.5 Drain ohmic contact – Ni/Au (Mask5) 28
3.2.6 Gate & Pad metal (Ni/Au) (Mask6) 29
3.3 ITO process 30
3.3.1 Metal alignment key and test TLM pattern (Mask1) 30
3.3.2 P-GaN etching (Mask2) 30
3.3.3 Device isolation (Mask3) 30
3.3.4 Drain ohmic contact - ITO (Mask4) 31
3.3.5 Source ohmic contact (Mask5) 31
3.3.6 Gate & Pad metal (Ni/Au) 32
Chapter 4 Characterization and Experiment Results 33
4.1 Current - Voltage measurement analysis 33
4.1.1 TLM measurement 33
4.1.2 Current - Voltage measurement of different drain structure 37
4.1.3 Specific on-resistance analysis 41
4.1.4 Pulsed measurement 44
4.2 Breakdown characteristic 46
4.2.1 The breakdown measurement of device 46
4.2.2 The breakdown measurement of device 48
4.3 Optical properties 49
4.3.1 The position of emission light 49
4.3.2 Switching characteristic 52
4.3.3 Input current – Output light intensity 52
4.4 Light spectrum 53
4.4.1 The light spectrum 53
4.4.2 The light spectrum dependence on temperature 55
Chapter 5 Conclusion 58
Reference 59
[1] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481-1483, Aug. 1994.
[2] M. Asif Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a twodimensional electron gas in low pressure metalorganic chemical vapor deposited GaNAlxGa1−xN heterojunctions, ” Appl. Phys. Lett., vol.60, no. 24, pp. 3027-3029, Mar. 1992.
[3] M. Asif Khan, M.S. Shur and Q. Chen, “High transconductance AIGaN/GaN optoelectronic heterostructure field effect transistor, ” IEE Electronics Lett., vol. 31, no. 24, pp. 2130-2131, Nov. 1995.
[4] Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors, ” App.. Physics Lett., vol. 69, no. 10, pp. 1438-1440, Sep. 1996.
[5] S. Yoshida , H. Ishii, J. Li, D. Wang and Masakazu, “A high-power AlGaN/GaN heterojunction field-effect transistor,” Solid-State Electronics, vol. 47, no. 3, pp. 589-592, Mar. 2003.
[6] S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, H. Ohashi, “High breakdown voltage AlGaN/GaN MIS–HEMT with SiN and TiO2 gate insulator,” Solid-State Electronics, vol.50, no. 6, pp. 1057-1061, Jun. 2006.
[7] O. Wada, T. Sanada, and T. Sakurai, “Monolithic Integration of an AlGaAs/GaAs DH LED with a GaAs FET Driver,” IEEE Electron Device Lett., vol. 3, no. 10, pp. 305-307, Oct. 1982.
[8] C. H. Hong, C. T. Kim, and Y. S. Kwon, “A vertical Integration of GaAs/GaAlAs and Vertical FET with Embedded Schottky Electrodes,” Japanese Journal of Applied Physics, vol. 29, no. 12, pp. L2427-L2429, Dec. 1990.
[9] J. Waldron, R. F. Karlicek, and T. P. Chow, "Monolithic LED Microdisplay on Active Matrix Substrate Using Flip-Chip Technology," IEEE Journal of selected topics in Quantum Electronics, vol. 15, no. 4, pp. 1298-1302, 2012.
[10] F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, et al., “Monolithic integration of nitride-based transistor with light emitting diode for sensing applications,” Microelectron. Eng., vol. 90, pp. 33–36, Feb. 2012.
[11] Z. Li, J. Waldron, T. Detchprohm, et al., “Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate,” Appl. Phys. Lett., vol. 102, no. 19, p. 192107 - 192107-3, 2013.
[12] Z. J. Li, T. Huang, J Ma, C. Liu, and K. M. Lau, “Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD,” IEEE Electron Device Lett., vol. 35, no. 3, pp. 330-332, Mar. 2014.
[13] M. Feng, N. Holonyak, Jr., and W. Hafez, “Light-emitting transistor: Light emission from InGaP Õ GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 84, no. 1, p. 151 - 153, 2004.
[14] G. Walter, N. Holonyak, Jr., M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett., vol. 85, no. 20, p. 4768 - 4770, 2004.
[15] M. Feng, N. Holonyak, Jr., G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett., vol. 87, no. 13, p. 131103-1 - 131103-3, 2005.
[16] F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoç, “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, Mar. 2001.
[17] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, R. Dimitrov, L. Wittmer, and M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6 , pp. 3222-3233, Mar. 1999.
[18] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” IEEE Electron Device Lett, vol. 19, no. 3, pp. 89-91, Mar. 1998.
[19] J. Y. Shiu, J. C. Huang, V. Desmaris, C. T. Chang, C. Y. Lu, K. Kumakura, T. Makimoto, H. Zirath, N. Rorsman, and E. Y. Chang, “Oxygen Ion Implantation Isolation Planar Process for AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 28, no. 6 , pp. 476-478, Jun. 2007.
[20] J. O. Song, J.-S. Ha, and T.-Y. Seong, "Ohmic-contact technology for GaN-based light-emitting diodes: role of P-type contact," IEEE Trans. Electron Devices, vol. 57, no. 1, pp. 42-59, Jan. 2010.
[21] J. T. Trexler, S. J. Pearton, P. H. Holloway, M. G. Mier, K. R. Evans, and R. F. Karlicek, "Comparison of Ni/Au, Pd/Au, Cr/Au metallizations for ohmic contacts to p-GaN," in Proc. Mater. Res. Symp., 1997, pp. 1091-1094.
[22] A. C. Schmitz, A. T. Ping, M. A. Khan, and I. Adesida, "Schottky barrier height of Ni, Pt, Pd, and Au on n-type GaN," in Proc. Mater. Res. Soc., 1996, pp. 831-834.
[23] J.-K. Ho, C.-S. Jong, C. C. Chiu, C.-N. Huang, C.-Y. Chen, and K.-K. Shih, "Low-resistance ohmic contacts to p-type GaN," Appl. Phys. Lett., vol. 74, no. 9, pp. 1275-1277, Mar. 1999
[24] H. Cho, T. Hossain, J. Bae, and I. Adesida, "Characterization of Pd/Ni/Au ohmic contacts on p-GaN," Solid State Electron., vol. 49, no. 5, pp. 774-778, May 2005.
[25] J.-S. Jang, I.-S. Chan, H.-K. Kim, T.-Y. Seong, S. Lee, and S.-J. Park, "Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN," Appl. Phys. Lett., vol. 74, no. 1, pp. 70-72, 1999.
[26] Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, and N. Shibata, "Effects of annealing in an Oxygen ambient on electrical properties of ohmic contacts to p-type GaN," J. Electronic Materials, vol. 28, no. 3, pp. 341-346, 1999.
[27] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. Kuo, and K. K. Shih, "Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films," J. Appl. Phys., vol. 86, no. 8, pp. 4491-4497, Oct. 1999.
[28] H. W. Jang, S. Y. Kim, and J.-L. Lee, "Mechanism for ohmic contact formation of oxidized Ni/Au on p-type GaN," J. Appl. Phys., vol. 94, no. 3, pp. 1748–1752, Aug. 2003.
[29] J.-L. Yang, J. S. Chena, and S. J. Chang, "Presence of nanosize Au dots on the formation of ohmic contact for the Ni–Au base film to p-GaN," J. Vac. Sci. Technol. B, vol. 23, no. 5, pp. 2127-2131, Oct. 2005.
[30] W.B. Lanford, T. Tanaka, Y. Otoki and I. Adesida, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” IEE Electronics Lett., vol. 41, no. 7, pp. 449-450, Mar. 2005.
[31] Teisseyre H., Perlin P., Suski T., Grzegory I., Porowski S., Jun J., Pietraszko A., Moustakas T.D., “Temperature dependence of the energy gap in GaN bulk single crystals and epitaxial layer,” J. Appl. Phys,. pp. 2429-2434, 1994.
[32] Bougrov V., Levinshtein M.E., Rumyantsev S.L., Zubrilov A., “Properties of Advanced SemiconductorMaterials GaN, AlN, InN, BN, SiC, SiGe,” Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John Wiley & Sons, Inc., New York, 2001.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *