帳號:guest(3.145.95.107)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張晉嘉
論文名稱(中文):具自我準位電路之互補式金氧半電路色光感測器
論文名稱(外文):A Study of CMOS Color Detectors with Self-Calibration Circuit
指導教授(中文):金雅琴
口試委員(中文):林崇榮
廖崇維
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063538
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:感測器自我校準類比記憶體
相關次數:
  • 推薦推薦:0
  • 點閱點閱:469
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
現今,CMOS邏輯技術將感測器與電路整合於單一晶片中,使得晶片的製作成本、耗電量及晶片大小皆能有大幅度降低,進而能廣泛應用在行動裝置上。隨著行動裝置與穿戴裝置的進步與普級,應用於裝置上的環境感測器需求也逐漸提高。其中,對於色光的感測於螢幕顯示、拍照、感測環境光源等應用上皆是相當重要的一環。
感測電路中皆需要參考準位作為比較值,提供電路做判定或是校正。目前的感測電路,大多使用一個電容來儲存參考準位。然而,電容為一種揮發性的元件,漏電時間過長會導致參考準位失準,此問題可以利用定時充電修正參考準位或是加大電容來延長儲存時間,但兩種方式皆需要額外的面積,且在晶片電源關閉後,參考準位將會流失。
本論文提出一個由不同深度的接面二極體、P型通道記憶體及周邊電路所組成的色光感測架構。此色光感測架構經由負回授的方式將參考準位儲存於P型通道記憶體中,因此不需要額外給予參考電壓,而P型通道記憶體為一種非揮發性的記憶體,參考準位即使在電源關閉後仍能持續保存。此色光感測器完全相容於CMOS邏輯製程,P型通道記憶體能長期儲存參考準位、降低電量消耗。未來,相當適合應用於行動電子產品中,也可以與無線環境感測技術結合。
內文目錄
摘要 i
Abstract ii
致謝 iii
內文目錄 iv
附圖目錄 vi
附表目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 章節簡介 1
第二章 文獻回顧 3
2.1 P通道記憶體簡介 3
2.1.1 NeoBit 4
2.1.2 P通道可自我修復差動多次寫入非揮發性記憶體 4
2.2 CMOS電路中的光感測器 4
2.2.1 CMOS影像感測器與電荷耦合元件之技術發展 5
2.2.2 CMOS光二極體 5
2.3 CMOS色光感測器介紹 6
2.3.1 結合色彩過濾陣列色光感測器 6
2.3.2 整合色彩像素色光感測器 7
2.3.3 堆疊二極體色光感測器 7
2.4 小結 8
第三章 P通道記憶體單元 20
3.1 P通道記憶體元件結構與寫入原理 20
3.2 量測結果 21
3.3 P通道記憶體之SPICE模型 22
3.4 小結 22
第四章 結合P通道記憶體的自我準位色光感測電路設計 31
4.1 光二極體的色光變化感測 31
4.1.1 目標反應簡介 31
4.1.2 使用TCAD做CMOS光二極體模擬 32
4.1.3 TCAD模擬光二極體元件的光電性 32
4.2 結合P通道記憶體之自我準位電路設計與模擬 33
4.2.1 電流鏡與光二極體架構 33
4.2.2 操作點電壓控制電路 34
4.2.3 負回授寫入P通道記憶體電路 35
4.2.4 結合P通道記憶體之自我準位電路 36
4.3 小結 37
第五章 電路量測結果 60
5.1 光二極體量測結果 60
5.2 電路量測結果與分析 61
5.2.1 操作點電壓控制電路量測 61
5.2.2 負回授寫入架構量測 62
5.3 小結 62
第六章 結語 71
參考文獻 72
[1] M. H. Chiang, Y. C. Liu, S. T. Yang, and G. H. Lee, "Biomimetic Model Featuring the NH Proton and Bridging Hydride Related to a Proposed Intermediate in Enzymatic H-2 Production by Fe-Only Hydrogenase," Inorganic Chemistry, vol. 48, pp. 7604-7612, Aug 2009.
[2] D. Kahng and S. M. Sze, "A floating gate and its application to memory devices," Bell System Technical Journal, vol. 46, pp. 1288-1295, 1967.
[3] K. R. Han, M. K. Jeong, I. Cho, and J. H. Lee, "5-bit/cell Characteristics using mixed program/erase mechanism in recessed channel non-volatile memory cells," Current Applied Physics, vol. 10, pp. E2-E4, Jan 2010.
[4] S. S. Chung, C.-M. Yih, S.-M. Cheng, and M.-S. Liang, "A new technique for hot carrier reliability evaluations of flash memory cell after long-term program/erase cycles," Electron Devices, IEEE Transactions on, vol. 46, pp. 1883-1889, 1999.
[5] M. Kang, W. Hahn, I. H. Park, H. Lee, J. Park, Y. Song, et al., "A Simple compact model for hot carrier injection phenomenon in 32 nm NAND flash memory device," in Electron Devices and Solid-State Circuits (EDSSC), 2010 IEEE International Conference of, 2010, pp. 1-4.
[6] W.-J. Tsai, T. F. Ou, J. S. Huang, C. H. Cheng, C.-Y. Lu, T. Wang, et al., "A highly punchthrough-immune operation method for an ultra-short-channel hot-carrier-injection type non-volatile memory cell," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[7] S. Y. Chung, S. Chan, K. T. Chang, B. Davis, G. Kathawala, K. Ko, et al., "A Novel FN Erasable Undercut Device Containing Two Physically Separated Nitride Storage Nodes Per Cell Suitable for Advanced NOR Flash Memory Technology," in Memory Workshop (IMW), 2011 3rd IEEE International, 2011, pp. 1-2.
[8] A. Fox, K. E. Ehwald, P. Schley, R. Barth, S. Marschmeyer, C. Wolf, et al., "Cost-effective integration of an FN-programmed embedded flash memory into a 0.25 µm RF-BiCMOS technology," in Microelectronics, 2004. ICM 2004 Proceedings. The 16th International Conference on, 2004, pp. 463-466.
[9] R. S. C. Wang, R. S. J. Shen, and C. C. H. Hsu, "Neobit® - high reliable logic non-volatile memory (NVM)," in Physical and Failure Analysis of Integrated Circuits, 2004. IPFA 2004. Proceedings of the 11th International Symposium on the, 2004, pp. 111-114.
[10] F. R. L. Lin, Y.-S. Wang, and C. C. H. Hsu, "Multi-level p-channel flash memory," in Solid-State and Integrated Circuit Technology, 1998. Proceedings. 1998 5th International Conference on, 1998, pp. 457-463.
[11] T.-L. Lee, Y.-H. Tsai, W.-J. Lin, H.-L. Yang, C.-W. Lien, C.-J. Lin, et al., "A New Differential P-Channel Logic-Compatible Multiple-Time Programmable (MTP) Memory Cell With Self-Recovery Operation," Electron Device Letters, IEEE, vol. 32, pp. 587-589, 2011.
[12] A. Lustica, "CCD and CMOS image sensors in new HD cameras," in ELMAR, 2011 Proceedings, 2011, pp. 133-136.
[13] B. S. Carlson, "Comparison of modern CCD and CMOS image sensor technologies and systems for low resolution imaging," in Sensors, 2002. Proceedings of IEEE, 2002, pp. 171-176 vol.1.
[14] E. R. Fossum, "CMOS image sensors: electronic camera on a chip," in Electron Devices Meeting, 1995. IEDM '95., International, 1995, pp. 17-25.
[15] J. Tan, B. Buttgen, and A. J. P. Theuwissen, "Analyzing the Radiation Degradation of 4-Transistor Deep Submicron Technology CMOS Image Sensors," Sensors Journal, IEEE, vol. 12, pp. 2278-2286, 2012.
[16] H. K. Kim, G. Cho, S. W. Lee, Y. H. Shin, and H. S. Cho, "Development and evaluation of a digital radiographic system based on CMOS image sensor," Nuclear Science, IEEE Transactions on, vol. 48, pp. 662-666, 2001.
[17] M. Vatteroni, D. Covi, D. Stoppa, B. Crespi, and A. Sartori, "High dynamic range CMOS image sensors in biomedical applications," in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007, pp. 2819-2822.
[18] D. Scheffer, B. Dierickx, and G. Meynants, "Random addressable 2048x2048 active pixel image sensor," Electron Devices, IEEE Transactions on, vol. 44, pp. 1716-1720, 1997.
[19] Z. Barkon and R. Vrba, "Gamma ray damage of biased CCD image sensors," in Sensors and the International Conference on new Techniques in Pharmaceutical and Biomedical Research, 2005 Asian Conference on, 2005, pp. 173-175.
[20] W. A. R. Franks, M. J. Kiik, and A. Nathan, "UV-responsive CCD image sensors with enhanced inorganic phosphor coatings," Electron Devices, IEEE Transactions on, vol. 50, pp. 352-358, 2003.
[21] E. Oda, K. Nagano, T. Tanaka, N. Mutoh, and K. Orihara, "A 1920(H)x1035(V) pixel high-definition CCD image sensor," Solid-State Circuits, IEEE Journal of, vol. 24, pp. 711-717, 1989.
[22] D. X. Yang, H. Min, B. A. Fowler, A. El Gamal, M. Beiley, and K. M. Cham, "Test structures for characterization and comparative analysis of CMOS image sensors," in Advanced Imaging and Network Technologies, 1996, pp. 8-17.
[23] H. Tian, X. Liu, S. Lim, S. Kleinfelder, and A. El Gamal, "Active pixel sensors fabricated in a standard 0.18-μm CMOS technology," in Photonics West 2001-Electronic Imaging, 2001, pp. 441-449.
[24] I. Inoue, N. Tanaka, H. Yamashita, T. Yamaguchi, H. Ishiwata, and H. Ihara, "Low-leakage-current and low-operating-voltage buried photodiode for a CMOS imager," Electron Devices, IEEE Transactions on, vol. 50, pp. 43-47, 2003.
[25] R. F. Wolffenbuttel, "Color filters integrated with the detector in silicon," Electron Device Letters, IEEE, vol. 8, pp. 13-15, 1987.
[26] L. Condat, "A New Color Filter Array With Optimal Properties for Noiseless and Noisy Color Image Acquisition," Image Processing, IEEE Transactions on, vol. 20, pp. 2200-2210, 2011.
[27] P. B. Catrysse and B. A. Wandell, "Integrated color pixels in 0.18-mu m complementary metal oxide semiconductor technology," Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 20, pp. 2293-2306, Dec 2003.
[28] R. F. Lyon and P. M. Hubel, "Eyeing the camera: Into the next century," in Color and Imaging Conference, 2002, pp. 349-355.
[29] A. Polzer, W. Gaberl, and H. Zimmermann, "Filter-less vertical integrated RGB color sensor for light monitoring," in MIPRO, 2011 Proceedings of the 34th International Convention, 2011, pp. 55-59.
[30] M. A. Green, "Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients," Solar Energy Materials and Solar Cells, vol. 92, pp. 1305-1310, 11// 2008.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *