帳號:guest(18.216.3.63)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡宗穎
作者(外文):Tsai, Tzung Ying
論文名稱(中文):使用改良式離子佈植製程來製作雙自我對準4H碳化矽垂直型金氧半場效電晶體
論文名稱(外文):Double Self-Aligned 4H-SiC DMOSFET Realized by Improved Implantation Process
指導教授(中文):黃智方
指導教授(外文):Huang, Chih Fang
口試委員(中文):龔正
李坤彥
口試委員(外文):Gong, Jeng
Lee, Kung Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063531
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:51
中文關鍵詞:碳化矽垂直型金氧半場效電晶體雙自我對準
外文關鍵詞:4H-SiCdouble-implanted metal-oxide-semiconductor field effect transistordouble self-aligned
相關次數:
  • 推薦推薦:0
  • 點閱點閱:375
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文的目標是利用自我對準P井及源極傾斜角度離子佈植來製作出短通道的4H碳化矽垂直型雙佈植金氧半場效電晶體。並配合歐姆金屬自我對準製程,來縮小元件的單位線寬,因而達到降低特徵導通電阻的期望。
本次實驗根據上述製程製作出D-mode DMOSFET元件,量測到最佳特徵導通電阻為57.95 mΩ*cm2,此時量測條件為閘極電壓20伏特、汲極電壓1伏特,發生在較小動作區面積31482 um2及較長有效通道寬度5004 um、JFET長度4 μm的元件。另外本次實驗量測到的最佳崩潰電壓是在磊晶層厚度為30 μm的sample僅700伏特,應該是由於P井離子佈植在1650oC退火的活化不完全,導致在反向高壓時的橫向擊穿。
The goal of this thesis is to use self-aligned p-well and n-source ion implantation with tilting an angle to fabricate a short channel 4H-SiC double implant MOSFET. Also with a self-aligned ohmic contact process, the device cell pitch can be shrunk and hence the specific on resistance is expected to reduce significantly.
In this experiment, we have demonstrated D-mode DMOSFETs with the proposed process and the best RON,SP is 57.95 mΩ*cm2, extracted when Vg = 20 V and Vd = 1 V on a device with a smaller active area of 31482 um2, a longer effective channel width of 5004 um and a JFET length of 4 μm. The best breakdown voltage measured in this work is only 700 V on a sample with a epi-layer thickness of 30 μm. And the possible explanation is the incomplete p-well ion implantation activation at 1650oC anneal, which causes lateral punch-through at high reverse biases.
中文摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VIII
第一章 序論 1
1.1 介紹碳化矽材料 1
1.2 垂直型雙佈植金氧半電晶體 (Vertical Double Implant MOSFET) 2
1.3 文獻回顧 3
1.4 研究動機與論文大綱 5
第二章 元件設計與模擬 6
2 DMOSFET元件改善 6
2.1 通道電阻改善 6
2.1.1 自我對準製程 (Self-Aligned Process) 6
2.1.2 氧化熱退火製程 7
2.2 JFET區域電阻改善 7
2.3 歐姆接觸金屬自我對準製程 8
2.4 邊緣終結保護結構 (Edge Termination) 8
2.5 離子佈植阻障層 9
2.6 DMOSFET元件模擬 10
第三章 製程實驗 17
3.1 一般清潔 (Normal Clean) 17
3.2 P井離子佈植 (P-well Implant) 17
3.3 源極離子佈植 (Source Implant) 18
3.4 基極離子佈植 (Body Implant) 19
3.5 接面終端延伸離子佈植 (Junction Termination Extension Implant) 19
3.6 反摻雜離子佈植 (Counter-Doped Implant) 20
3.7 閘極氧化層成長 (Gate Oxide Formation) 21
3.8 閘極電極定義 (Gate Electrode Definition) 21
3.9 源極與基極歐姆接觸 (Source & Body Ohmic Contact) 22
3.10 汲極歐姆接觸與快速熱退火 (Drain Ohmic Contact & Rapid Thermal Annealing) 23
3.11 閘極電極窗口打開與源極墊金屬 (Gate Electrode Window Opening & Source Pad Metal) 23
第四章 實驗量測分析與探討 33
4.1 測試元件 33
4.2 DMOSFET元件 34
第五章 結論與未來展望 49
參考文獻 50
[1] A. R. Powell and L. M. Ghezzo, “SiC Material-Progress Status and Potential Roadblocks, ” IEEE Proc., vol. 60, pp.942-955,2002.
[2] G. R. Fisher and P. Barnes, “Toward a Unified View of Polytypism in Silicon Carbide,” Phil. Mag. B, vol. 61, no. 2, pp. 217-236, Feb. 1990
[3] M. Matin, A. Saha, and J. A. Cooper, “A Self-Aligned Process for High-Voltage, Short-Channel Vertical DMOSFETs in 4H-SiC, ” IEEE Trans. Electron Devices, vol. 51, no. 10, pp. 1721-1725, Oct. 2004.
[4] A. Saha and J. A. Cooper, “A 1-kV 4H-SiC Power DMOSFET Optimized for Low ON-Resistance, ” IEEE Trans. Electron Devices, vol. 54, no. 10, pp. 2786-2791, Oct. 2007.
[5] S. R. Wang and J. A. Cooper, “Double-Self-Aligned Short-Channel Power DMOSFETs in 4H-SiC,” Device Research Conference 2009, pp. 277-278, 22-24 June 2009.
[6] L. Cheng, S. H. Ryu, C. Jonas, S. Dhar, R. Callanan, J. Richmond,
A. K. Agarwal, and J. Palmour, “ 3300 V, 30 A 4H-SiC Power DMOSFETs, ” ISDRS '09, pp. 1-2, 9-11 Dec. 2009.
[7] A. Bolotnikov, P. Losee, K. M. J. Glaser, J. Nasadoski, L. Wang,
A. Elasser, S. Arthur, Z. Stum, P. Sandvik, Y. Sui, T. Johnson,
J. Sabate and L. Stevanovic, “3.3kV SiC MOSFETs Designed for Low On-Resistance and Fast Switching, ” ISPSD 2012, pp.389-392, 3-7 June 2012.
[8] B. Jayant Baliga, “Power Semiconductor devices, ” 2008.
[9] H. Matsunami, O. Noboru, T. Kimoto, “Technology of Semiconductor SiC and Its Appliction, ” 2011
[10] J. Y. Jiang, H. C. Hsu, K. W. Chu, C. F. Huang and F. Zhao, “Experimental Study of Counter-Doped Junction Termination Extension of 4H-SiC Power Devices, ” IEEE Electron Device Letters, vol. 36, no. 7, pp. 699-701, July, 2015.
[11] X. Lu, H. Huang, N. Nemchuk, and R. S. Ruoff, “ Patterning of Highly Oriented Pyrolytic Graphite by Oxygen Plasma Etching, ” Appl. Phys. Lett., vol. 75, no. 2, pp. 193-195, 12 July 1999.
[12] R. S. Howell, S. Buchoff, S. V. Campen, T. R. McNutt, H. Hearne,
A. Ezis, M. E. Sherwin, R. C. Clarke, and R. Singh, “Comparisons of Design and Yield for Large-Area 10-kV 4H-SiC DMOSFETs,” IEEE Trans. Electron Devices, vol. 55, no. 8, Aug. 2008
[13] H. Matsunami and T. Kimoto, “Step-Controlled Epitaxial Growth of SiC:High Quality Homoepitaxy,” Mater. Sci. Eng., vol. 20, no. 3, pp. 125–166, Aug. 1997.
[14] M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for Power Devices,” IEEE Trans. Electron Devices, vol. 40, no. 3, pp. 645–655, Mar. 1993.
[15] R. Perez, D. Tournier, A. Perez-Tomas, P. Godignon, N. Mestres, and J. Millan, “Planar Edge Termination Design and Technology Considerations for 1.7-kV 4H-SiC PiN Diodes, ” IEEE Trans. Electron Devices, vol. 52, no. 10, pp. 2309-2316, Oct. 2005.
[16] K. Shenai, R. S. Scott, and B. J. Baliga, “Optimum Semiconductors for High-Power Electronics,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1811-1823, Sep. 1989.
[17] J. R. Jenny, D. P. Malta, V. F. Tsvetkov, M. K. Das, H. McD. Hobgood, C. H. Carter, R. J. Kumar, J. M. Borrego, R. J. Gutmann, and R. Aavikko, “Effects of Annealing on Carrier Lifetime in 4H-SiC,” J. Appl. Phys., vol. 100, no. 11, pp. 113710-113710-6, Dec. 2006.
[18] E. A. Imhoff, and F. J. Kub, “High-Performance Smoothly Tapered Junction Terminaion Extensions for High-Voltage,” IEEE Trans. Electron Devices, vol. 58, no. 10, pp. 3395-3400, Oct. 2011.
[19] V. Heera, D. Panknin, and W. Skorupa, “p-Type Doping of SiC by High Dose Al Implantation—Problems and Progress,” Appl. Surface Science., vol. 184, no. 1, pp. 307-316, Dec. 2001.
[20] Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami, “Electronic Behaviors of High-Dose Phosphorus-Ion Implanted 4H-SiC(0001),” J. Appl. Phys., vol. 96, no. 1, Jul. 2004.
[21] B. J. Baliga, “The Pinch Rectifiers,” IEEE Electron Device Lett., vol. 5, no. 6, pp. 194-196, Jun. 1984.
[22] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, “Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide, ” IEEE Electron Device Lett., vol. 31, no. 7, July 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *