帳號:guest(18.225.56.120)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許瑋仁
作者(外文):Hsu, Wei-Jen
論文名稱(中文):單層二硒化鎢二維半導體及其電子元件特性
論文名稱(外文):Two-dimensional Semiconducting Monolayer WSe2 and its Electronic Device Properties
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):李奎毅
徐永珍
邱博文
口試委員(外文):Kuei-Yi Lee
Yung-Jane Hsu
Po-Wen Chiu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:101063530
出版年(民國):103
畢業學年度:103
語文別:中文
論文頁數:94
中文關鍵詞:二硒化鎢化學氣相沉積場效電晶體光學剝離法
外文關鍵詞:WSe2Chemical Vapor DepositionField Effect TransistorOptical Ablation Method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1048
  • 評分評分:*****
  • 下載下載:45
  • 收藏收藏:0
過渡金屬二硫族化物(Transition-metal Dichalcogenides, TMDCs)為一種二維材料的統稱,是元素週期表上部分過渡金屬與硫族元素排列組合而形成的材料,如:二硒化鎢(WSe2)與二硫化鉬(MoS2)等等。他們具有半導體特性、原子級厚度、適當直接能隙、高穿透與可撓性等優點,在光學及電學特性上皆有優異表現。
以往製備TMDCs最普遍的做法為機械剝離法,雖可快速取得材料但在層數與位置上卻難以控制,增加製作元件的難度,因此本論文選擇以化學氣相沉積製備具半導體特性的二硒化鎢,對於材料層數、沉積位置以及品質有良好的控制。另外本實驗也開發出新穎技術低溫光學剝離法能夠精準控制逐層剝離二維材料,在未來可運用此技術達到快速且潔淨的大面積圖紋化製備。最後我們也針對二硒化鎢的電學及光電特性做討論,將二硒化鎢製作成背閘極結構場效電晶體並檢測其電性,之後以514 nm Ar+雷射光源照射二硒化鎢並觀察光電效應。在電性結果我們得到了場效載子遷移率為6 cm2/V‧s,次臨界擺幅為203 mV/dec;光電方面則是對514 nm光源有2.88 mAW-1的光響應。
Transition-metal Dichalcogenides (TMDCs) collectively name a series of two - dimensional materials, composed of transition metal groups and chalcogenides in the periodic table; one of such materials are: tungsten diselenide (WSe2), molybdenum disulfide (MoS2). These materials have semiconducting properties, have shown atomic-scale thickness, direct band gap, high transmittance and flexibility, etc. Besides these properties, TMDCs have shown outstanding performance in both electrical and optical fields of study.
In the past, the most popular way to synthesize TMDCs was to mechanically exfoliate each material. This method provides the least time to get material but at the cost of hard to control thickness and location for the targeted material, thus proving difficult for device fabrication. In view of this, in this work we have decided to use a Chemical Vapor Deposition (CVD) system to synthesize semiconducting WSe2 so that thickness, deposition locations, and quality are adequately controlled. In addition, we have also developed a new low temperature Optical Ablation Method that can precisely ablate 2D materials layer by layer; as such we can adopt this method to achieve clean and fast lithography for larger areas. Last but not least, we will focus on the electrical and optical characteristics of WSe2, by fabricating it into a back-gate structure field-effect transistor and measuring its electrical properties, using a 514 nm wavelength Ar$^+$ laser as source to irradiate the device channel and observe its photoelectrical response, obtaining a photoresponsivity up to 2.88 mAW-1. From the results of electrical measurements, a mobility of up to 6 cm2/V‧s, and subthreshold swing is 203 mV/dec.
論文摘要............................................... I

目錄.................................................. VI

第一章緒論.............................................. 1
1.1 半導體科技發展史.................................... 1
1.2 侷限與發展.......................................... 3
1.3 嶄新技術與新穎結構.................................. 3
1.3.1 高介電常數金屬閘極................................ 3
1.3.2 新結構與薄膜材料電晶體............................. 4
1.4 論文結構............................................ 5

第二章過渡金屬二硫族化物基本特性.......................... 7
2.1 緒論............................................... 7
2.2 TMDCs 之組成與結構.................................. 7
2.3 TMDCs 電子能帶結構................................. 10
2.3.1 TMDCs 之電性.................................... 10
2.3.2 TMDCs 層數與能隙................................. 10
2.3.3 TMDCs 之自旋-軌道作用.............................12

第三章過渡金屬二硫族化物成長與元件應用................... 15
3.1 TMDCs 合成與製備................................... 15
3.1.1 機械剝離法(Mechanical Exfoliation)............... 15
3.1.2 化學氣相沉積法(Chemical Vapor Deposition Method). 15
3.2 TMDCs 電子元件與其他應用........................... 20
3.2.1 載子傳輸與散射機制............................... 20
3.2.2 TMDCs 場效電晶體................................ 22
3.2.3 TMDCs 數位邏輯電路元件........................... 23
3.2.4 TMDCs 電雙層電晶體............................... 24
3.2.5 TMDCs 光電元件................................... 25
3.2.6 TMDCs 其餘元件應用............................... 27

第四章WSe2 之成長與材料檢測............................. 29
4.1 化學氣相沉積合成WSe2 .............................. 29
4.2 WSe2 材料檢測...................................... 34
4.2.1 原子力顯微鏡檢測................................. 35
4.2.2 拉曼光譜及光致螢光光譜檢測........................ 36
4.2.3 穿透式顯微鏡檢測................................. 39
4.2.4 總結........................................... 41

第五章光學剝離法之研發與應用............................ 43
5.1 實驗設備.......................................... 43
5.2 雷射蝕刻單層石墨烯................................. 50
5.3 多層石墨烯雷射逐層剝離.............................. 54
5.3.1 石墨烯的抗滲透性................................. 54
5.3.2 光學法逐層剝離石墨烯.............................. 55

第六章WSe2 元件製作及實驗結果討論....................... 63
6.1 WSe2 元件製作...................................... 63
6.1.1 材料轉印技術..................................... 63
6.1.2 電子束微影....................................... 63
6.1.3 反應式離子蝕刻與熱金屬蒸鍍........................ 65
6.1.4 電晶體與光電元件量測系統.......................... 66
6.2 WSe2 場效電晶體.................................... 68
6.3 WSe2 光電效應...................................... 73
6.4 總結與元件改善方向................................. 76

第七章總結與未來展望.................................... 79

參考文獻............................................... 81
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev., vol. 74, no. 2, p. 230, 1948.
[2] “The first vacuum triode,” http://history-computer.com/ModernComputer/Basis/
audion.html.
[3] “The first bipolar junction transistor,” http://microblog.routed.net/2006/12/12/
shockleys-and-pearsons-bipolar-junction-transistor/.
[4] “The first metal-oxide-semiconductor FET,” http:// www.computerhistory.org/
semiconductor/timeline/1960-MOS.html.
[5] “The first integrated IC,” http://en.wikipedia.org/wiki/Integrated_circuit.
[6] “The first silicon integrated circuit chip,” http://www.computerhistory.org/timeline/?
category=cmpnt.
[7] “Intel roadmap before 2020,” http:// hexus.net/ tech/ news/ cpu/ 39381-intelcurrently-
developing-14nm-aiming-towards-5nm-chips/.
[8] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, et al., “A 45nm logic technology with highk + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging,” in Electron Devices Meeting, 2007.
IEDM 2007. IEEE International, pp. 247–250, IEEE, 2007.
[9] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS nano, vol. 8, no. 2, pp. 1102–1120, 2014.
[10] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,”
Science, vol. 306, no. 5696, pp. 666–669, 2004.
[11] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation
of the observed optical, electrical and structural properties,” Advances in Physics, vol. 18, no. 73, pp. 193–335, 1969.
[12] L. Mattheiss, “Band structures of transition-metal-dichalcogenide layer compounds,” Phys. Rev. B, vol. 8, no. 8, p. 3719, 1973.
[13] M. Osada and T. Sasaki, “Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks,” Adv. Mater., vol. 24, no. 2,
pp. 210–228, 2012.
[14] A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, “Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides,” J. Appl. Phys., vol. 101, no. 1, pp. 014507–014507, 2007.
[15] D. Pacile, J. Meyer, C. O. Girit, and A. Zettl, “The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes,” Appl. Phys. Lett., vol. 92, no. 13, pp. 133107–133107, 2008.
[16] C. Dean, A. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. Shepard, et al., “Boron nitride substrates for high-quality graphene electronics,” Nature nanotechnology, vol. 5, no. 10, pp. 722–726, 2010.
[17] A. D. Yoffe, “Layer compounds,” Annual Review of Materials Science, vol. 3, no. 1, pp. 147–170, 1973.
[18] A. Yoffe, “Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some
quasi-two-dimensional systems,” Advances in Physics, vol. 42, no. 2, pp. 173–262, 1993.
[19] E. Mooser, Physics and chemistry of materials with layered structures. Springer,1979.
[20] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, “First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M =
Mo,Nb,W,Ta; X = S,Se,Te) monolayers,” Physica B: Condensed Matter, vol. 406, no. 11, pp. 2254–2260, 2011.
[21] F. Lévy, Intercalated layered materials. No. 6, Springer, 1979.
[22] L. Mattheiss, “Energy bands for 2H-NbSe2 and 2H-MoS2,” Phys. Rev. Lett., vol. 30, no. 17, p. 784, 1973.
[23] T. Finteis, M. Hengsberger, T. Straub, K. Fauth, R. Claessen, P. Auer, P. Steiner, S. Hüfner, P. Blaha, M. Vögt, et al., “Occupied and unoccupied electronic band
structure of WSe2,” Phys. Rev. B, vol. 55, no. 16, p. 10400, 1997.
[24] K. Kam and B. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides,” The Journal of Physical Chemistry, vol. 86, no. 4, pp. 463–467, 1982.
[25] A. Beal, H. Hughes, and W. Liang, “The reflectivity spectra of some group VA transition metal dichalcogenides,” Journal of Physics C: Solid State Physics, vol. 8, no. 24, p. 4236, 1975.
[26] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,”
Nature chemistry, vol. 5, no. 4, pp. 263–275, 2013.
[27] A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, “Electronic band structure of single-crystal and single-layer WS2 : Influence of interlayer
van der Waals interactions,” Phys. Rev. B, vol. 64, no. 20, p. 205416, 2001.
[28] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, p. 136805, 2010.
[29] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, no. 4, pp. 1271–1275, 2010.
[30] H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary roomtemperature photoluminescence in triangular WS2 monolayers,” Nano Lett., vol. 13, no. 8, pp. 3447–3454, 2012.
[31] H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, et al., “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Scientific reports, vol. 3, p. 1608, 2013.
[32] A. Kumar and P. Ahluwalia, “Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S,Se,Te) from ab-initio theory: New direct band gap semiconductors,” The European Physical Journal BCondensed Matter and Complex Systems, vol. 85, no. 6, pp. 1–7, 2012.
[33] Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,” Phys.
Rev. B, vol. 84, no. 15, p. 153402, 2011.
[34] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett.,
vol. 108, no. 19, p. 196802, 2012.
[35] D. Xiao, W. Yao, and Q. Niu, “Valley-contrasting physics in graphene: Magnetic moment and topological transport,” Phys. Rev. Lett., vol. 99, no. 23, p. 236809,
2007.
[36] K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 30, pp. 10451–10453, 2005.
[37] M. Benameur, B. Radisavljevic, J. Heron, S. Sahoo, H. Berger, and A. Kis, “Visibility of dichalcogenide nanolayers,” Nanotechnology, vol. 22, no. 12, p. 125706,
2011.
[38] H. Li, G. Lu, Z. Yin, Q. He, H. Li, Q. Zhang, and H. Zhang, “Optical identification of single-and few-layer MoS2 sheets,” Small, vol. 8, no. 5, pp. 682–686, 2012.
[39] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, et al., “Large-area synthesis of high-quality and uniform graphene films
on copper foils,” Science, vol. 324, no. 5932, pp. 1312–1314, 2009.
[40] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, et al., “Roll-to-roll production of 30-inch graphene films
for transparent electrodes,” Nature nanotechnology, vol. 5, no. 8, pp. 574–578, 2010.
[41] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, et al., “Growth of large-area and highly crystalline MoS2
thin layers on insulating substrates,” Nano Lett., vol. 12, no. 3, pp. 1538–1544,2012.
[42] J. L. Brito, M. Ilija, and P. Hernández, “Thermal and reductive decomposition of ammonium thiomolybdates,” Thermochim. Acta, vol. 256, no. 2, pp. 325–338, 1995.
[43] J. Pütz and M. A. Aegerter, “MoSx thin films by thermolysis of a single-source precursor,” J. Sol-Gel Sci. Technol., vol. 19, no. 1-3, pp. 821–824, 2000.
[44] Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L.-J. Li, et al., “Van der Waals epitaxy of MoS2 layers using graphne
as growth templates,” Nano Lett., vol. 12, no. 6, pp. 2784–2791, 2012.
[45] A. Geim and I. Grigorieva, “Van der Waals heterostructures,” Nature, vol. 499, no. 7459, pp. 419–425, 2013.
[46] Y. Ma, Y. Dai, M. Guo, C. Niu, and B. Huang, “Graphene adhesion on MoS2 monolayer: An ab initio study,” Nanoscale, vol. 3, no. 9, pp. 3883–3887, 2011.
[47] J. Wilson, “LEED and AES study of the interaction of H2S and Mo (100),” Surf.Sci., vol. 53, no. 1, pp. 330–340, 1975.
[48] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, “Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate,” Small,
vol. 8, no. 7, pp. 966–971, 2012.
[49] Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, “Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization,”
Nanoscale, vol. 4, no. 20, pp. 6637–6641, 2012.
[50] A. L. Elias, N. Perea-López, A. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, et al., “Controlled synthesis and
transfer of large-area WS2 sheets: From single layer to few layers,” ACS nano, vol. 7, no. 6, pp. 5235–5242,2013.
[51] S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, and K. Kalantar-Zadeh, “Atomically thin layers of
MoS2 via a two step thermal evaporation–exfoliation method,” Nanoscale, vol. 4, no. 2, pp. 461–466, 2012.
[52] X. L. Li and Y. D. Li, “Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S,” Chemistry-A European Journal, vol. 9, no. 12,
pp. 2726–2731, 2003.
[53] G. Salitra, G. Hodes, E. Klein, and R. Tenne, “Highly oriented WSe2 thin films prepared by selenization of evaporated WO3,” Thin Solid Films, vol. 245, no. 1,
pp. 180–185, 1994.
[54] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, et al., “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater., vol. 24, no. 17, pp. 2320–2325, 2012.
[55] Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.- T. Chang, C.-S. Chang, et al., “Synthesis and transfer of single-layer transition
metal disulfides on diverse surfaces,” Nano Lett., vol. 13, no. 4, pp. 1852–1857, 2013.
[56] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, et al., “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary,” ACS nano, vol. 7, no. 10, pp. 8963–8971, 2013.
[57] J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly
crystalline WSe2 monolayers and device applications,” ACS nano, vol. 8, no. 1, pp. 923–930, 2013.
[58] Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Z. Yang, and Y. Qian, “Hydrothermal synthesis of MoS2 and its pressure-related crystallization,” J. Solid State Chem.,
vol. 159, no. 1, pp. 170–173, 2001.
[59] Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Y. Jia, and Y. Qian, “Hydrothermal
synthesis and characterization of single-molecular-layer MoS2 and MoSe2,” Chem. Lett., no. 8, pp. 772–773, 2001.
[60] H. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. Rao, “MoS2 and WS2 analogues of graphene,” Angewandte Chemie International Edition, vol. 122, no. 24, pp. 4153–4156, 2010.
[61] H. RamakrishnaáMatte et al., “Graphene analogues of layered metal selenides,” Dalton Trans., vol. 40, no. 40, pp. 10322–10325, 2011.
[62] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Singlelayer MoS2 transistors,” Nature nanotechnology, vol. 6, no. 3, pp. 147–150, 2011.
[63] B. Radisavljevic and A. Kis, “Mobility engineering and a metal-insulator transition in monolayer MoS2,” Nat. Mater., vol. 12, no. 9, pp. 815–820, 2013.
[64] B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, “Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2,” Nano Lett., vol. 13, no. 9, pp. 4212–4216, 2013.
[65] A. T. Neal, H. Liu, J. Gu, and P. D. Ye, “Magneto-transport in MoS2 : Phase coherence, spin-orbit scattering, and the hall factor,” ACS nano, vol. 7, no. 8, pp. 7077–7082, 2013.
[66] S. Larentis, B. Fallahazad, and E. Tutuc, “Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers,” Appl. Phys. Lett., vol. 101, no. 22, p. 223104, 2012.
[67] K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Phonon-limited mobility in n-type single-layer MoS2 from first principles,” Phys. Rev. B, vol. 85, no. 11, p. 115317, 2012.
[68] R. Fivaz and E. Mooser, “Mobility of charge carriers in semiconducting layer structures,” Phys. Rev., vol. 163, no. 3, p. 743, 1967.
[69] V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett., vol. 84, no. 17, pp. 3301–3303, 2004.
[70] D. Jena and A. Konar, “Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering,” Phys. Rev. Lett., vol. 98, no. 13, p. 136805,2007.
[71] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “Highperformance single layered WSe2 p-FETs with chemically doped contacts,” Nano
Lett., vol. 12, no. 7, pp. 3788–3792, 2012.
[72] K. Lee, H.-Y. Kim, M. Lotya, J. N. Coleman, G.-T. Kim, and G. S. Duesberg, “Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation,”Adv. Mater., vol. 23, no. 36, pp. 4178–4182, 2011.
[73] Y. Yoon, K. Ganapathi, and S. Salahuddin, “How good can monolayer MoS2 transistors be?,” Nano Lett., vol. 11, no. 9, pp. 3768–3773, 2011.
[74] B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2,” Acs Nano, vol. 5, no. 12, pp. 9934–9938, 2011.
[75] H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, “Integrated circuits based on bilayer MoS2 transistors,”
Nano Lett., vol. 12, no. 9, pp. 4674–4680, 2012.
[76] M. Tosun, S. Chuang, H. Fang, A. B. Sachid, M. Hettick, Y. Lin, Y. Zeng, and A. Javey, “High-gain inverters based on WSe2 complementary field-effect transistors,” ACS nano, vol. 8, no. 5, pp. 4948–4953, 2014.
[77] A. Nishino, I. Tanahashi, and A. Yoshida, “Electric double layer capacitor,” Dec. 31 1985. US Patent 4,562,511.
[78] A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2,” ACS nano, 2014.
[79] D. Braga, I. Gutie?rrez Lezama, H. Berger, and A. F. Morpurgo, “Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors,” Nano Lett., vol. 12, no. 10, pp. 5218–5223, 2012.
[80] M. M. Perera, M.-W. Lin, H.-J. Chuang, B. P. Chamlagain, C. Wang, X. Tan, M. M.-C. Cheng, D. Tománek, and Z. Zhou, “Improved carrier mobility in few- layer MoS2 field-effect transistors with ionic-liquid gating,” ACS nano, vol. 7, no. 5, pp. 4449–4458, 2013.
[81] Y. Zhang, J. Ye, Y. Yomogida, T. Takenobu, and Y. Iwasa, “Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor,” Nano Lett., vol. 13,
no. 7, pp. 3023–3028, 2013.
[82] P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nature photonics, vol. 2, no. 6, pp. 341–350, 2008.
[83] G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nat. Mater., vol. 5, no. 9, pp. 683–696, 2006.
[84] M. Law, J. Goldberger, and P. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res., vol. 34, pp. 83–122, 2004.
[85] B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable pn diodes in a monolayer dichalcogenide,” Nature nanotechnology, vol. 9, no. 4, pp. 262–267, 2014.
[86] A. Pospischil, M. M. Furchi, and T. Mueller, “Solar-energy conversion and light emission in an atomic monolayer pn diode,” Nature nanotechnology, vol. 9, pp. 257–261, 2014.
[87] J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, et al., “Electrically tunable
excitonic light-emitting diodes based on monolayer WSe2 pn junctions,” Nature nanotechnology, vol. 9, no. 4, pp. 268–272, 2014.
[88] R. Tenne and A. Wold, “Passivation of recombination centers in n-WSe2 yields high efficiency (> 14%) photoelectrochemical cell,” Appl. Phys. Lett., vol. 47,
no. 7, pp. 707–709, 1985.
[89] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nature nanotechnology, vol. 8, no. 7, pp. 497–501, 2013.
[90] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS nano, vol. 6, no. 1, pp. 74–
80, 2011.
[91] H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, “MoS2 nanosheet phototransistors with thickness-modulated
optical energy gap,” Nano Lett., vol. 12, no. 7, pp. 3695–3700, 2012.
[92] S. Das, R. Gulotty, A. V. Sumant, and A. Roelofs, “All two-dimensional, flexible, transparent, and thinnest thin film transistor,” Nano Lett., vol. 14, no. 5, pp. 2861–2866, 2014.
[93] H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p and
n-type field-effect transistors contacted by highly doped graphene for lowresistance contacts,” Nano Lett., vol. 14, no. 6, pp. 3594–3601, 2014.
[94] D. J. Late, Y.-K. Huang, B. Liu, J. Acharya, S. N. Shirodkar, J. Luo, A. Yan, D. Charles, U. V. Waghmare, V. P. Dravid, et al., “Sensing behavior of atomically
thin-layered MoS2 transistors,” Acs Nano, vol. 7, no. 6, pp. 4879–4891, 2013.
[95] T. Tsirlina, Y. Feldman, M. Homyonfer, J. Sloan, J. Hutchison, and R. Tenne, “Synthesis and characterization of inorganic fullerene-like WSe2 material,”Fullerene science and technology, vol. 6, no. 1, pp. 157–165, 1998.
[96] P. Hajiyev, C. Cong, C. Qiu, and T. Yu, “Contrast and raman spectroscopy study of single-and few-layered charge density wave material: 2H-TaSe2,” Scientific
reports, vol. 3, p. 2593, 2013.
[97] Y. Zhao, X. Luo, H. Li, J. Zhang, P. T. Araujo, C. K. Gan, J. Wu, H. Zhang, S. Y. Quek, M. S. Dresselhaus, et al., “Interlayer breathing and shear modes in
few-trilayer MoS2 and WSe2,” Nano Lett., vol. 13, no. 3, pp. 1007–1015, 2013.
[98] H. Terrones, E. Del Corro, S. Feng, J. Poumirol, D. Rhodes, D. Smirnov, N. Pradhan, Z. Lin, M. Nguyen, A. Elías, et al., “New first order raman-active modes in
few layered transition metal dichalcogenides,” Scientific reports, vol. 4, p. 4215, 2014.
[99] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. Zahn, et al., “Photoluminescence emission and raman
response of monolayer MoS2, MoSe2, and WSe2,” Optics express, vol. 21, no. 4, pp. 4908–4916, 2013.
[100] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. Peeters, “Anomalous raman spectra and thickness-dependent electronic properties of
WSe2,” Phys. Rev. B, vol. 87, no. 16, p. 165409, 2013.
[101] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, “Effects of lower symmetry and dimensionality on raman spectra in two-dimensional WSe2,”
Phys. Rev. B, vol. 88, no. 19, p. 195313, 2013.
[102] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono-and few-layer sheets of WS2
and WSe2,” Nanoscale, vol. 5, no. 20, pp. 9677–9683, 2013.
[103] W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. Castro Neto, and G. Eda, “Origin of indirect optical transitions in few-layer MoS2, WS2, and
WSe2,” Nano Lett., vol. 13, no. 11, pp. 5627–5634, 2013.
[104] X. Liang, A. S. Chang, Y. Zhang, B. D. Harteneck, H. Choo, D. L. Olynick, and S. Cabrini, “Electrostatic force assisted exfoliation of prepatterned few-layer
graphenes into device sites,” Nano Lett., vol. 9, no. 1, pp. 467–472, 2008.
[105] “Pocket-laser-engraver,” http:// www.instructables.com/ id/ Pocket-laserengraver/.
[106] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene
sheets,” Nano Lett., vol. 8, no. 8, pp. 2458–2462, 2008.
[107] W. Zhang, S. Lee, K. L. McNear, T. F. Chung, S. Lee, K. Lee, S. A. Crist, T. L. Ratliff, Z. Zhong, Y. P. Chen, et al., “Use of graphene as protection film in biological environments,” Scientific reports, vol. 4, p. 4097, 2014.
[108] S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, X. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, et al., “Oxidation resistance of graphene-coated Cu and Cu/Ni alloy,” ACS nano, vol. 5, no. 2, pp. 1321–1327, 2011.
[109] V. Berry, “Impermeability of graphene and its applications,” Carbon, vol. 62, pp. 1–10, 2013.
[110] “WSe2 thermogravimetric analysis,” http://shodhganga.inflibnet.ac.in/bitstream/
10603/7347/11/11-chapter%205.pdf.
[111] S. Peng, K. Cho, P. Qi, and H. Dai, “Ab initio study of CNT NO2 gas sensor,” Chem. Phys. Lett., vol. 387, no. 4, pp. 271–276, 2004.
[112] G. Lee, B. Lee, J. Kim, and K. Cho, “Ozone adsorption on graphene: ab initio study and experimental validation,” The Journal of Physical Chemistry C, vol. 113, no. 32, pp. 14225–14229, 2009.
[113] W. Zhang, M.-H. Chiu, C.-H. Chen, W. Chen, L.-J. Li, and A. T. S. Wee, “Role of metal contacts in high-performance phototransistors based on WSe2 monolayers,”
ACS Nano, vol. 8, no. 8, pp. 8653–8661, 2014.
[114] X. Lu, M. I. B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S. T. Pantelides, J. Wang, Z. Dong, Z. Liu, et al., “Large-area synthesis of monolayer and few- layer MoSe2 films on SiO2 substrates,” Nano Lett., vol. 14, no. 5, pp. 2419–2425, 2014.
[115] F. Withers, T. H. Bointon, D. C. Hudson, M. F. Craciun, and S. Russo, “Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment,” Scientific reports, vol. 4, p. 4967, 2014.
[116] K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, “Electrical transport properties of graphene on SiO2 with specific surface structures,” J. Appl. Phys., vol. 110, no. 2, p. 024513, 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *